Câu hỏi:
25/06/2022 1,971Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do H là hình chiếu của S lên mặt phẳng (ABC) nên \[SH \bot (ABC)\]
Vậy AH là hình chiếu của SA lên mp (ABC)
\[ \Rightarrow \left( {SA;\left( {ABC} \right)} \right) = \left( {SA;HA} \right) = \widehat {SAH}\] (do\[SH \bot \left( {ABC} \right) \Rightarrow SH \bot AH\]hay \[\widehat {SAH} < {90^0}\]Mà: \[{\rm{\Delta }}ABC = {\rm{\Delta }}SBC \Rightarrow SH = AH\]
Vậy tam giác SAH vuông cân tại H ⇒\[\widehat {SAH} = {45^0}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB, αα là góc tạo bởi đường thẳng CG và mặt phẳng (SAC). Tính \[sin\alpha .\]
Câu 2:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)
Góc giữa đường thẳng SC và mặt phẳng đáy bằng
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với mp(ABCD). Gọi α là góc giữa BD và mp(SAD). Chọn khẳng định đúng trong các khẳng định sau?
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA=SB=SC=b. Gọi G là trọng tâm \[\Delta ABC\]. Độ dài SG là:
Câu 5:
Cho hình chóp S.ABCD, với đáy ABCD là hình bình hành tâm O;AD,SA,AB đôi một vuông góc AD=8,SA=6. (P)là mặt phẳng qua trung điểm của AB và vuông góc với AB. Thiết diện của (P) và hình chóp có diện tích bằng?
Câu 6:
Cho tam giác ABC vuông cân tại A và BC=a.. Trên đường thẳng qua A vuông góc với (ABC) lấy điểm SS sao cho \(SA = \frac{{a\sqrt 6 }}{2}\). Tính số đo góc giữa đường thẳng SA và (ABC)
về câu hỏi!