ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
343 người thi tuần này 4.6 1.3 K lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.Góc giữa AC và (BCD) là góc ACB.
B.Góc giữa AD và (ABC) là góc ADB.
C.Góc giữa AC và (ABD) là góc CAB.
D.Góc giữa CD và (ABD) là góc CBD.
Lời giải
Từ giả thiết ta có\(\left\{ {\begin{array}{*{20}{c}}{AB \bot BC}\\{AB \bot CD}\end{array}} \right. \Rightarrow AB \bot (BCD)\)
Do đó\[\left( {AC,\left( {BCD} \right)} \right) = \left( {AC,BC} \right) = \widehat {ACB}\]
Đáp án cần chọn là: A
Câu 2
A.\[{30^ \circ }\]
B.\[{45^ \circ }\]
C.\[{60^ \circ }\]
D.\[{90^ \circ }\]
Lời giải
\[SA \bot \left( {ABC} \right) \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = {90^ \circ }\]
Đáp án cần chọn là: D
Câu 3
A.\[{30^ \circ }\]
B.\[{45^ \circ }\]
C.\[{60^ \circ }\]
D.\[{75^ \circ }\]
Lời giải
Gọi H là trung điểm của BC suy ra
\[AH = BH = CH = \frac{1}{2}BC = \frac{a}{2}\]
Ta có:\[SH \bot \left( {ABC} \right) \Rightarrow SH = \sqrt {S{B^2} - B{H^2}} = \frac{{a\sqrt 3 }}{2}\]
\[\widehat {\left( {SA,\left( {ABC} \right)} \right)} = \widehat {\left( {SA,HA} \right)} = \widehat {SAH} = \alpha \]
\[ \Rightarrow \tan \alpha = \frac{{SH}}{{AH}} = \sqrt 3 \Rightarrow \alpha = {60^ \circ }\]
Đáp án cần chọn là: C
Câu 4
A.\[{30^ \circ }\]
B.\[{45^ \circ }\]
C.\[{60^ \circ }\]
D.\[{75^ \circ }\]
Lời giải
Ta có: \[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC\]
\[ \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC,AC} \right)} = \widehat {SCA} = \alpha \]
ABCD là hình vuông cạnh\[a \Rightarrow AC = a\sqrt 2 ,SA = \frac{{a\sqrt 6 }}{3}\]
\[ \Rightarrow \tan \alpha = \frac{{SA}}{{AC}} = \frac{{\sqrt 3 }}{3} \Rightarrow \alpha = {30^ \circ }\]
Đáp án cần chọn là: A
Câu 5
A.\[{60^0}\]
B. \[{75^0}\]
C. \[{45^0}\]
D. \[{30^0}\]
Lời giải
Do H là hình chiếu của S lên mặt phẳng (ABC) nên \[SH \bot (ABC)\]
Vậy AH là hình chiếu của SA lên mp (ABC)
\[ \Rightarrow \left( {SA;\left( {ABC} \right)} \right) = \left( {SA;HA} \right) = \widehat {SAH}\] (do\[SH \bot \left( {ABC} \right) \Rightarrow SH \bot AH\]hay \[\widehat {SAH} < {90^0}\]Mà: \[{\rm{\Delta }}ABC = {\rm{\Delta }}SBC \Rightarrow SH = AH\]
Vậy tam giác SAH vuông cân tại H ⇒\[\widehat {SAH} = {45^0}\]
Đáp án cần chọn là: C
Câu 6
A.\[\alpha = {30^0}.\]
B. \[\tan \alpha = \frac{2}{{\sqrt 3 }}.\]
C. \[\alpha = {45^0}.\]
D. \[\tan \alpha = \sqrt 2 .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho
B.Nếu a và b song song (hoặc a trùng với b) thì góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng bb và mặt phẳng (P) .
C.Nếu góc giữa đường thẳng aa và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).
D.Góc giữa đường thẳng aa và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) thì a song song với b.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \[IO \bot (ABCD).\]
B.\[BC \bot SB.\].
C.(SAC) là mặt phẳng trung trực của đoạn BD.
D.Tam giác SCD vuông ở D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.\[\tan \alpha = \frac{1}{{\sqrt 8 }}.\]
B. \[\tan \alpha = \frac{1}{{\sqrt 7 }}.\]
C. \[\alpha = {30^0}.\]
D. \[\tan \alpha = \frac{1}{{\sqrt 6 }}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.\[\frac{{\sqrt {9{b^2} + 3{a^2}} }}{3}\]
B. \[\frac{{\sqrt {{b^2} - 3{a^2}} }}{3}\]
C. \[\frac{{\sqrt {9{b^2} - 3{a^2}} }}{3}\]
D. \[\frac{{\sqrt {{b^2} + 3{a^2}} }}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[\alpha = {60^0}\]
B. \[\alpha = {30^0}\]
C. \[\cos \alpha = \frac{{\sqrt 3 }}{{2\sqrt 2 }}\]
D. \[\sin \alpha = \frac{{\sqrt 3 }}{{2\sqrt 2 }}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[\cos \alpha = \frac{{\sqrt 3 }}{3}\]
B. \[\cos \alpha = \frac{{\sqrt 3 }}{4}\]
C. \[\cos \alpha = 0\]
D. \[\cos \alpha = \frac{{\sqrt 3 }}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[\sin \beta = \frac{1}{2}\]
B. \[\cot \beta = \frac{{\sqrt 3 }}{2}\]
C. \[\tan \beta = \frac{{\sqrt 3 }}{2}\]
D. \[\beta = {60^0}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[{90^ \circ }\]
B. \[{45^ \circ }\]
C. \[{30^ \circ }\]
D. \[{60^ \circ }\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[\frac{{\sqrt {17} }}{{17}}\]
B. \[\frac{1}{{\sqrt {34} }}\]
C. \[\frac{2}{{\sqrt {17} }}\]
D. \[\frac{2}{{\sqrt {34} }}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.