ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
36 người thi tuần này 4.6 0.9 K lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Từ giả thiết ta có\(\left\{ {\begin{array}{*{20}{c}}{AB \bot BC}\\{AB \bot CD}\end{array}} \right. \Rightarrow AB \bot (BCD)\)
Do đó\[\left( {AC,\left( {BCD} \right)} \right) = \left( {AC,BC} \right) = \widehat {ACB}\]
Đáp án cần chọn là: A
Lời giải
\[SA \bot \left( {ABC} \right) \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = {90^ \circ }\]
Đáp án cần chọn là: D
Lời giải
Gọi H là trung điểm của BC suy ra
\[AH = BH = CH = \frac{1}{2}BC = \frac{a}{2}\]
Ta có:\[SH \bot \left( {ABC} \right) \Rightarrow SH = \sqrt {S{B^2} - B{H^2}} = \frac{{a\sqrt 3 }}{2}\]
\[\widehat {\left( {SA,\left( {ABC} \right)} \right)} = \widehat {\left( {SA,HA} \right)} = \widehat {SAH} = \alpha \]
\[ \Rightarrow \tan \alpha = \frac{{SH}}{{AH}} = \sqrt 3 \Rightarrow \alpha = {60^ \circ }\]
Đáp án cần chọn là: C
Lời giải
Ta có: \[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC\]
\[ \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC,AC} \right)} = \widehat {SCA} = \alpha \]
ABCD là hình vuông cạnh\[a \Rightarrow AC = a\sqrt 2 ,SA = \frac{{a\sqrt 6 }}{3}\]
\[ \Rightarrow \tan \alpha = \frac{{SA}}{{AC}} = \frac{{\sqrt 3 }}{3} \Rightarrow \alpha = {30^ \circ }\]
Đáp án cần chọn là: A
Lời giải
Do H là hình chiếu của S lên mặt phẳng (ABC) nên \[SH \bot (ABC)\]
Vậy AH là hình chiếu của SA lên mp (ABC)
\[ \Rightarrow \left( {SA;\left( {ABC} \right)} \right) = \left( {SA;HA} \right) = \widehat {SAH}\] (do\[SH \bot \left( {ABC} \right) \Rightarrow SH \bot AH\]hay \[\widehat {SAH} < {90^0}\]Mà: \[{\rm{\Delta }}ABC = {\rm{\Delta }}SBC \Rightarrow SH = AH\]
Vậy tam giác SAH vuông cân tại H ⇒\[\widehat {SAH} = {45^0}\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
181 Đánh giá
50%
40%
0%
0%
0%