Câu hỏi:

25/06/2022 377

Cho hình thoi ABCD có tâm \(O,\widehat {ADC} = {60^0},AC = 2a\). Lấy điểm S không thuộc (ABCD) sao cho \[SO \bot (ABCD)\] Gọi \[\alpha \] là góc giữa đường thẳng SB và mặt phẳng (ABCD) và \[tan\alpha = \frac{1}{2}\]. Gọi \[\beta \] là góc giữa SC và (ABCD)(ABCD), chọn mệnh đề đúng :

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình thoi ABCD có tâm (ảnh 1)

Vì \[SO \bot (ABCD)\;\] nên OB là hình chiếu của SB trên mặt phẳng đáy.

Do đó \[\alpha = \left( {SB,\left( {ABCD} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO}\] và \[\beta = \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\] Hình thoi ABCD có \[AC = 2a,\widehat {ADC} = {60^0} \Rightarrow {\rm{\Delta }}ADC\] đều \[ \Rightarrow AD = 2a\]

Tam giác AOD vuông tại O nên \[OD = \sqrt {A{D^2} - A{O^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \Rightarrow OB = a\sqrt 3 \]

Lại có \[\tan \alpha = \frac{1}{2} \Rightarrow \frac{{SO}}{{OB}} = \frac{1}{2} \Rightarrow SO = \frac{1}{2}OB = \frac{1}{2}.a\sqrt 3 = \frac{{a\sqrt 3 }}{2}\] Vậy \[\tan \beta = \tan \widehat {SCO} = \frac{{SO}}{{OC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{a} = \frac{{\sqrt 3 }}{2}\]

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB, αα là góc tạo bởi đường thẳng CG và mặt phẳng (SAC). Tính \[sin\alpha .\]

Xem đáp án » 25/06/2022 5,996

Câu 2:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC).

Xem đáp án » 25/06/2022 3,293

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với mp(ABCD). Gọi α là góc giữa BD và mp(SAD). Chọn khẳng định đúng trong các khẳng định sau?

Xem đáp án » 25/06/2022 3,209

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và (ảnh 1)

Góc giữa đường thẳng SC và mặt phẳng đáy bằng

Xem đáp án » 25/06/2022 2,996

Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA=SB=SC=b. Gọi G là trọng tâm \[\Delta ABC\]. Độ dài SG là:

Xem đáp án » 25/06/2022 1,434

Câu 6:

Cho hình chóp S.ABCD, với đáy ABCD là hình bình hành tâm O;AD,SA,AB đôi một vuông góc AD=8,SA=6. (P)là mặt phẳng qua trung điểm của AB và vuông góc với AB. Thiết diện của (P) và hình chóp có diện tích bằng?

Xem đáp án » 25/06/2022 1,264

Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC=a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB=a. Tính số đo của góc giữa SA và (ABC).

Xem đáp án » 25/06/2022 762
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua