Câu hỏi:
25/06/2022 3,893Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)
Góc giữa đường thẳng SC và mặt phẳng đáy bằng
Quảng cáo
Trả lời:
Bước 1:
SA vuông góc với mặt phẳng đáy nên hình chiếu của SC lên (ABC) là AC.
Bước 2:
Góc giữa SC và (ABC) là\[\widehat {SCA}\]
Bước 3:
\[\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 5 \\\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt {15} }}{{a\sqrt 5 }} = \sqrt 3 \\ \Rightarrow \widehat {SCA} = {60^0}\end{array}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1:
Gọi O là tâm của ABCD.
M là trung điểm của AO, N là trung điểm của AB.
Qua G kẻ GP song song với MN \[(P \in SM).\]
Ta có ABCD là hình vuông nên \[BD \bot AC\]. Mà \[MN||BD \Rightarrow MN \bot AC\].
Ta lại có \[MN \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\]
\[\begin{array}{l}MN \bot \left( {SAC} \right)\\GP||MN \Rightarrow GP \bot \left( {SAC} \right)\end{array}\]
Bước 2:
Hình chiếu của C lên (SAC) là C, hình chiếu của G lên (SAC) là P.
=> Hình chiếu của CG lên (SAC) là CP
Góc giữa CG và (SAC) là góc giữa CG và CP và bằng \[\widehat {GCP} = \alpha \]
Bước 3:
\[GP = \frac{2}{3}MN = \frac{2}{3}.\frac{1}{2}OB = \frac{1}{3}.\frac{1}{2}BD = \frac{1}{6}.a\sqrt 2 \]
Kẻ\[PQ||SA \Rightarrow PQ = \frac{1}{3}SA = \frac{{2a}}{3}\]
\[\begin{array}{*{20}{l}}{CQ = \frac{1}{3}MA + 3MA = \frac{{10}}{3}.MA}\\{ = \frac{{10}}{3}.\frac{1}{4}AC = \frac{5}{6}AC = \frac{{5.a\sqrt 2 }}{6}}\\{ \Rightarrow CP = \sqrt {C{Q^2} + P{Q^2}} }\\{ = \sqrt {\frac{{25{a^2}}}{{18}} + \frac{{4{a^2}}}{9}} = a\sqrt {\frac{{11}}{6}} }\\{ \Rightarrow CG = \sqrt {C{P^2} + G{P^2}} = \frac{{a\sqrt {17} }}{3}}\\{ \Rightarrow \sin \alpha = \frac{{GP}}{{CG}} = \frac{{\sqrt 2 }}{6}.\frac{3}{{\sqrt {17} }} = \frac{1}{{\sqrt {34} }}}\end{array}\]
Đáp án cần chọn là: B
Lời giải
Gọi I là trung điểm \[{\rm{AS}} \Rightarrow {\rm{BI}} \bot {\rm{SA}}\]
Ta có:\[SH \bot \left( {ABCD} \right) \Rightarrow SH \bot AD\]
Mà \[AD \bot AB\] nên \[AD \bot \left( {SAB} \right) \Rightarrow AD \bot BI\]
Suy ra\[BI \bot (SAD) \Rightarrow \alpha = \widehat {IDB}\]
Ta có: \[BI = \frac{{AB\sqrt 3 }}{2},BD = AB\sqrt 2 \Rightarrow \sin \alpha = \frac{{BI}}{{BD}} = \frac{{\sqrt 3 }}{{2\sqrt 2 }}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận