Câu hỏi:
25/06/2022 2,755Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB, αα là góc tạo bởi đường thẳng CG và mặt phẳng (SAC). Tính \[sin\alpha .\]
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Bước 1:
Gọi O là tâm của ABCD.
M là trung điểm của AO, N là trung điểm của AB.
Qua G kẻ GP song song với MN \[(P \in SM).\]
Ta có ABCD là hình vuông nên \[BD \bot AC\]. Mà \[MN||BD \Rightarrow MN \bot AC\].
Ta lại có \[MN \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\]
\[\begin{array}{l}MN \bot \left( {SAC} \right)\\GP||MN \Rightarrow GP \bot \left( {SAC} \right)\end{array}\]
Bước 2:
Hình chiếu của C lên (SAC) là C, hình chiếu của G lên (SAC) là P.
=> Hình chiếu của CG lên (SAC) là CP
Góc giữa CG và (SAC) là góc giữa CG và CP và bằng \[\widehat {GCP} = \alpha \]
Bước 3:
\[GP = \frac{2}{3}MN = \frac{2}{3}.\frac{1}{2}OB = \frac{1}{3}.\frac{1}{2}BD = \frac{1}{6}.a\sqrt 2 \]
Kẻ\[PQ||SA \Rightarrow PQ = \frac{1}{3}SA = \frac{{2a}}{3}\]
\[\begin{array}{*{20}{l}}{CQ = \frac{1}{3}MA + 3MA = \frac{{10}}{3}.MA}\\{ = \frac{{10}}{3}.\frac{1}{4}AC = \frac{5}{6}AC = \frac{{5.a\sqrt 2 }}{6}}\\{ \Rightarrow CP = \sqrt {C{Q^2} + P{Q^2}} }\\{ = \sqrt {\frac{{25{a^2}}}{{18}} + \frac{{4{a^2}}}{9}} = a\sqrt {\frac{{11}}{6}} }\\{ \Rightarrow CG = \sqrt {C{P^2} + G{P^2}} = \frac{{a\sqrt {17} }}{3}}\\{ \Rightarrow \sin \alpha = \frac{{GP}}{{CG}} = \frac{{\sqrt 2 }}{6}.\frac{3}{{\sqrt {17} }} = \frac{1}{{\sqrt {34} }}}\end{array}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, SA vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)
Góc giữa đường thẳng SC và mặt phẳng đáy bằng
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với mp(ABCD). Gọi α là góc giữa BD và mp(SAD). Chọn khẳng định đúng trong các khẳng định sau?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC).
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA=SB=SC=b. Gọi G là trọng tâm \[\Delta ABC\]. Độ dài SG là:
Câu 5:
Cho hình chóp S.ABCD, với đáy ABCD là hình bình hành tâm O;AD,SA,AB đôi một vuông góc AD=8,SA=6. (P)là mặt phẳng qua trung điểm của AB và vuông góc với AB. Thiết diện của (P) và hình chóp có diện tích bằng?
Câu 6:
Cho tam giác ABC vuông cân tại A và BC=a.. Trên đường thẳng qua A vuông góc với (ABC) lấy điểm SS sao cho \(SA = \frac{{a\sqrt 6 }}{2}\). Tính số đo góc giữa đường thẳng SA và (ABC)
về câu hỏi!