Câu hỏi:
25/06/2022 580Cho hình chóp S.ABCD có \[SA \bot (ABCD)\] và đáy ABCD là hình chữ nhật. Gọi O là tâm của ABCD và I là trung điểm của SC. Khẳng định nào sau đây sai ?
Quảng cáo
Trả lời:
Có IO là đường trung bình tam giác SAC nên \[IO//SA\;\] nên \[IO \bot (ABCD)\;\] nên A đúng.
Có \(\left\{ {\begin{array}{*{20}{c}}{BC \bot AB}\\{BC \bot SA}\end{array}} \right. \Rightarrow BC \bot SB\) nên B đúng
Và \(\left\{ {\begin{array}{*{20}{c}}{CD \bot AD}\\{CD \bot SA}\end{array}} \right. \Rightarrow CD \bot SD\) nên phương án D đúng.
Đáp án C sai vì nếu (SAC) là mặt phẳng trung trực của \[BD \Rightarrow BD \bot AC\] (vô lý).
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1:
Gọi O là tâm của ABCD.
M là trung điểm của AO, N là trung điểm của AB.
Qua G kẻ GP song song với MN \[(P \in SM).\]
Ta có ABCD là hình vuông nên \[BD \bot AC\]. Mà \[MN||BD \Rightarrow MN \bot AC\].
Ta lại có \[MN \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\]
\[\begin{array}{l}MN \bot \left( {SAC} \right)\\GP||MN \Rightarrow GP \bot \left( {SAC} \right)\end{array}\]
Bước 2:
Hình chiếu của C lên (SAC) là C, hình chiếu của G lên (SAC) là P.
=> Hình chiếu của CG lên (SAC) là CP
Góc giữa CG và (SAC) là góc giữa CG và CP và bằng \[\widehat {GCP} = \alpha \]
Bước 3:
\[GP = \frac{2}{3}MN = \frac{2}{3}.\frac{1}{2}OB = \frac{1}{3}.\frac{1}{2}BD = \frac{1}{6}.a\sqrt 2 \]
Kẻ\[PQ||SA \Rightarrow PQ = \frac{1}{3}SA = \frac{{2a}}{3}\]
\[\begin{array}{*{20}{l}}{CQ = \frac{1}{3}MA + 3MA = \frac{{10}}{3}.MA}\\{ = \frac{{10}}{3}.\frac{1}{4}AC = \frac{5}{6}AC = \frac{{5.a\sqrt 2 }}{6}}\\{ \Rightarrow CP = \sqrt {C{Q^2} + P{Q^2}} }\\{ = \sqrt {\frac{{25{a^2}}}{{18}} + \frac{{4{a^2}}}{9}} = a\sqrt {\frac{{11}}{6}} }\\{ \Rightarrow CG = \sqrt {C{P^2} + G{P^2}} = \frac{{a\sqrt {17} }}{3}}\\{ \Rightarrow \sin \alpha = \frac{{GP}}{{CG}} = \frac{{\sqrt 2 }}{6}.\frac{3}{{\sqrt {17} }} = \frac{1}{{\sqrt {34} }}}\end{array}\]
Đáp án cần chọn là: B
Lời giải
Bước 1:
SA vuông góc với mặt phẳng đáy nên hình chiếu của SC lên (ABC) là AC.
Bước 2:
Góc giữa SC và (ABC) là\[\widehat {SCA}\]
Bước 3:
\[\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 5 \\\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt {15} }}{{a\sqrt 5 }} = \sqrt 3 \\ \Rightarrow \widehat {SCA} = {60^0}\end{array}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận