Câu hỏi:

25/06/2022 1,724

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB=SH=a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC). 

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[SH \bot \left( {ABC} \right) \Rightarrow SH \bot CH\](1)

Tam giác ABC cân tại C nên \[CH \bot AB\](2)

Từ (1) và (2), suy ra\[CH \bot \left( {SAB} \right)\]

Gọi I là trung điểm \[AC \Rightarrow \,\,HI//BC\mathop \to \limits^{BC{\kern 1pt} \bot {\kern 1pt} {\kern 1pt} AC} HI \bot AC\](3)

Mặt khác\[AC \bot SH\] (do \[SH \bot \left( {ABC} \right)\])(4)

Từ (3) và (4), suy ra \[AC \bot \left( {SHI} \right)\]

Kẻ\[HK \bot SI\,\left( {K \in SI} \right)\](5)

Từ \[AC \bot \left( {SHI} \right) \Rightarrow AC \bot HK\](6)

Từ (5) và (6), suy ra \[HK \bot \left( {SAC} \right)\]

Vì\(\left\{ {\begin{array}{*{20}{c}}{HK \bot (SAC)}\\{HC \bot (SAB)}\end{array}} \right.\) nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC

Ta có \[HK \bot \left( {SAC} \right) \Rightarrow HK \bot CK \Rightarrow {\rm{\Delta }}CHK\] vuông tại KDo đó góc giữa hai mặt phẳng (SAC) và (SAB) là\[\widehat {CHK}\]Có\[CH = \frac{1}{2}AB = \frac{a}{2}\]

\[\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{I^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{1}{2}.\frac{a}{{\sqrt 2 }}} \right)}^2}}} \Rightarrow HK = \frac{a}{3}\]

Do đó\[\cos \widehat {CHK} = \frac{{HK}}{{CH}} = \frac{{\frac{a}{3}}}{{\frac{a}{2}}} = \frac{2}{3}.\]Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=BC=2a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC), \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

Xem đáp án » 13/07/2024 8,266

Câu 2:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng aa. Gọi M là trung điểm SC. Tính góc \[\varphi \] giữa hai mặt phẳng (MBD) và  (ABCD).

Xem đáp án » 27/06/2022 4,885

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=AC=a. Hình chiếu vuông góc HH của SS trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và \(SH = \frac{{a\sqrt 6 }}{2}\). Gọi \[\varphi \] là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?

Xem đáp án » 27/06/2022 2,200

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi E,F lần lượt là trung điểm của cạnh AB và AC. Góc giữa hai mặt phẳng (SEF) và (SBC) là

Xem đáp án » 27/06/2022 1,878

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA=x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.

Xem đáp án » 27/06/2022 1,852

Câu 6:

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \) cạnh bên AA′=a (minh họa như hình vẽ). Góc giữa hai mặt phẳng (A′BD) và (C′BD) bằng bao nhiêu độ?

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh  (ảnh 1)

Xem đáp án » 13/07/2024 1,440

Bình luận


Bình luận