Câu hỏi:

27/06/2022 1,662

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng \({60^ \circ }\). Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{l}{60^0} = \widehat {\left( {SB;\left( {ABC} \right)} \right)}\\ = \widehat {\left( {SB;AB} \right)} = \widehat {SBA};\\SA = AB.\tan \widehat {SBA} = a.\sqrt 3 = a\sqrt 3 .\end{array}\]

Do M là trung điểm của cạnh AB nên \[d\left( {B;\left( {SMC} \right)} \right) = d\left( {A;\left( {SMC} \right)} \right)\]

Trong (SAB) kẻ \[AK \bot SM\,\,\,\left( 1 \right)\]

Ta có : \(\left\{ {\begin{array}{*{20}{c}}{CM \bot AB}\\{CM \bot SA}\end{array}} \right. \Rightarrow CM \bot (SAB) \Rightarrow CM \bot AK(2)\)

Từ (1) và (2)\[ \Rightarrow AK \bot \left( {SCM} \right) \Rightarrow d\left( {A;\left( {SMC} \right)} \right) = AK.\]

Tam giác vuông SAM, có\[AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {39} }}{{13}}\]

Vậy\[d\left( {B;\left( {SMC} \right)} \right) = AK = \frac{{a\sqrt {39} }}{{13}}\]

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng  (ảnh 1)

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng

Xem đáp án » 27/06/2022 6,449

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 27/06/2022 2,081

Câu 3:

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng \(\sqrt 6 \) (minh họa như hình vẽ). Gọi M là trung điểm của cạnh A′C′. Khoảng cách từ B′ đến mặt phẳng (ABM) bằng bao nhiêu?

Cho hình lăng trụ tam giác đều ABC.A′B′C′ có độ dài cạnh đáy AB=8,, cạnh bên bằng (ảnh 1)

Xem đáp án » 13/07/2024 1,810

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 27/06/2022 1,768

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

Xem đáp án » 27/06/2022 1,631

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm SD, hãy tính theo aa khoảng cách dd từ M đến mặt phẳng (SAC).

Xem đáp án » 13/07/2024 1,623

Bình luận


Bình luận