Câu hỏi:
27/06/2022 2,086Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).
Quảng cáo
Trả lời:
Gọi H là trung điểm AB, suy ra\[SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right).\]
Gọi E là trung điểm CD; K là hình chiếu vuông góc của H trên SE.
Ta có : \[HE \bot CD,SH \bot CD \Rightarrow CD \bot \left( {SHE} \right) \Rightarrow CD \bot HK\] mà \[HK \bot SE\] nên\[HK \bot \left( {SCD} \right)\]
Do AH//CD nên\(\)\[d\left( {A;\left( {SCD} \right)} \right) = d\left( {H;\left( {SCD} \right)} \right).\]
Khi đó \[d\left( {H;\left( {SCD} \right)} \right) = HK = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{\sqrt 3 }}{{\sqrt 7 }}.\]
Vậy\[d\left( {A;\left( {SCD} \right)} \right) = HK = \frac{{\sqrt {21} }}{7}.\]
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[A'A \bot \left( {ABCD} \right) \Rightarrow d\left( {A',\left( {ABCD} \right)} \right) = A'A = 3a\]
Đáp án cần chọn là: D
Lời giải
Gọi O là tâm của tam giác đều ABC.
Do hình chóp S.ABC đều nên suy ra \[SO \bot \left( {ABC} \right)\]
Gọi E là trung điểm BC ta có:
\[\begin{array}{*{20}{l}}{AO \cap \left( {SBC} \right) = E \Rightarrow \frac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {O;\left( {SBC} \right)} \right)}} = \frac{{AE}}{{OE}} = 3}\\{ \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 3.d\left( {O;\left( {SBC} \right)} \right).}\end{array}\]
Trong (SAE) kẻ \[OK \bot SE\,\,\,\,\left( 1 \right)\]
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BC \bot AE}\\{BC \bot SO}\end{array}} \right. \Rightarrow BC \bot (SAE) \Rightarrow BC \bot OK(2)\)
Từ (1) và (2) \[ \Rightarrow OK \bot \left( {SBC} \right) \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OK\]
Tính được \[SO = \sqrt {S{A^2} - {{\left( {\frac{2}{3}AE} \right)}^2}} = \sqrt {\frac{{21{a^2}}}{{36}} - {{\left( {\frac{2}{3}.\frac{{a\sqrt 3 }}{2}} \right)}^2}} = \frac{a}{2}\] và\[OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}.\]
Tam giác vuông SOE, có\[OK = \frac{{SO.OE}}{{\sqrt {S{O^2} + O{E^2}} }} = \frac{a}{4}\]
Vậy\[d\left( {A;\left( {SBC} \right)} \right) = 3OK = \frac{{3a}}{4}\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.