Câu hỏi:
27/06/2022 108Tính đạo hàm hàm số \[y = \ln \left( {1 + \sqrt {x + 1} } \right)\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\[y' = {\left[ {\ln \left( {1 + \sqrt {x + 1} } \right)} \right]^\prime } = \frac{{{{\left( {1 + \sqrt {x + 1} } \right)}^\prime }}}{{1 + \sqrt {x + 1} }} = \frac{{\frac{1}{{2\sqrt {x + 1} }}}}{{1 + \sqrt {x + 1} }} = \frac{1}{{2\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Câu 2:
Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?
Câu 3:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Câu 4:
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Câu 5:
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
về câu hỏi!