Câu hỏi:

27/06/2022 179

Cho x,y là các số thực thỏa mãn \[{\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\]. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = 2x - y.\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện : \[x + y > 0,x--y > 0\]

\[{\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1 \Leftrightarrow {\log _4}\left( {{x^2} - {y^2}} \right) \ge 1 \Leftrightarrow {x^2} - {y^2} \ge 4\]

Ta có:

\[P = 2x - y = \frac{{x + y + 3(x - y)}}{2} \ge \sqrt {(x + y).3(x - y)} = \sqrt {3({x^2} - {y^2})} = \sqrt {3.4} = 2\sqrt 3 \]

Dấu “=” xảy ra khi:

\(\left\{ {\begin{array}{*{20}{c}}{x + y = 3(x - y)}\\{{x^2} - {y^2} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 3(x - y)}\\{3{{(x - y)}^2} = 4}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - y = \frac{2}{{\sqrt 3 }}}\\{x + y = 2\sqrt 3 }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{{\sqrt 3 }} + \sqrt 3 }\\{y = \sqrt 3 - \frac{1}{{\sqrt 3 }}}\end{array}} \right.\)

Vậy  \[Min\,P = 2\sqrt 3 \]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị  (ảnh 1)

Xem đáp án » 27/06/2022 2,799

Câu 2:

Đồ thị của hàm số y = f(x)  đối xứng với đồ thị của hàm số \[y = {a^x}(a > 0,a \ne 1)\;\] qua điểm M(1;1). Giá trị của hàm số y = f(x) tại \[x = 2 + lo{g_a}\frac{1}{{2020\;}}\] bằng:

Xem đáp án » 27/06/2022 1,057

Câu 3:

Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 27/06/2022 878

Câu 4:

Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?

Xem đáp án » 27/06/2022 742

Câu 5:

Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 27/06/2022 514

Câu 6:

Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:

Xem đáp án » 27/06/2022 427

Câu 7:

Hàm số \[y = {\log _a}x\] có đạo hàm là:

Xem đáp án » 27/06/2022 405

Bình luận


Bình luận