Câu hỏi:
27/06/2022 123Cho x,y là các số thực thỏa mãn \[{\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\]. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = 2x - y.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện : \[x + y > 0,x--y > 0\]
\[{\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1 \Leftrightarrow {\log _4}\left( {{x^2} - {y^2}} \right) \ge 1 \Leftrightarrow {x^2} - {y^2} \ge 4\]
Ta có:
\[P = 2x - y = \frac{{x + y + 3(x - y)}}{2} \ge \sqrt {(x + y).3(x - y)} = \sqrt {3({x^2} - {y^2})} = \sqrt {3.4} = 2\sqrt 3 \]
Dấu “=” xảy ra khi:
\(\left\{ {\begin{array}{*{20}{c}}{x + y = 3(x - y)}\\{{x^2} - {y^2} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 3(x - y)}\\{3{{(x - y)}^2} = 4}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - y = \frac{2}{{\sqrt 3 }}}\\{x + y = 2\sqrt 3 }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{{\sqrt 3 }} + \sqrt 3 }\\{y = \sqrt 3 - \frac{1}{{\sqrt 3 }}}\end{array}} \right.\)
Vậy \[Min\,P = 2\sqrt 3 \]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Câu 2:
Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?
Câu 3:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Câu 4:
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Câu 5:
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
về câu hỏi!