Câu hỏi:

27/06/2022 207

Tập xác định của hàm số \[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] là một khoảng có độ dài n/m, với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m−n bằng:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số\[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] xác định

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{lo{g_{\frac{1}{{16}}}}x > 0}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) > 0}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 0}\\{lo{g_4}\left( {lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right)} \right) > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x < 1}\\{lo{g_{\frac{1}{{16}}}}x > 1}\\{\begin{array}{*{20}{c}}{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < 1}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 1}\end{array}}\end{array}} \right.} \right.\)</></>

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{lo{g_{\frac{1}{{16}}}}x < 16}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < \frac{1}{4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^{16}}}\\{lo{g_{\frac{1}{{16}}}}x < {{16}^{\frac{1}{4}}} = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {\frac{1}{{16}}} \right)}^{16}} < x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^2} = \frac{1}{{256}}}\end{array}} \right.\)

\( \Leftrightarrow \frac{1}{{256}} < x < \frac{1}{{16}}\)

Suy ra tập xác định của hàm số đã cho là\[D = \left( {\frac{1}{{256}};\frac{1}{{16}}} \right)\]

⇒ Tập xác định là khoảng có độ dài là\[\frac{1}{{16}} - \frac{1}{{256}} = \frac{{15}}{{256}} \Rightarrow n = 15,\,\,m = 256\]

Vậy\[m - n = 256 - 15 = 241\]

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị  (ảnh 1)

Xem đáp án » 27/06/2022 4,377

Câu 2:

Đồ thị của hàm số y = f(x)  đối xứng với đồ thị của hàm số \[y = {a^x}(a > 0,a \ne 1)\;\] qua điểm M(1;1). Giá trị của hàm số y = f(x) tại \[x = 2 + lo{g_a}\frac{1}{{2020\;}}\] bằng:

Xem đáp án » 27/06/2022 1,475

Câu 3:

Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 27/06/2022 944

Câu 4:

Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?

Xem đáp án » 27/06/2022 901

Câu 5:

Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 27/06/2022 619

Câu 6:

Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:

Xem đáp án » 27/06/2022 474

Câu 7:

Hàm số \[y = {\log _a}x(0 < a \ne 1)\] xác định trên:

Xem đáp án » 27/06/2022 464
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua