Câu hỏi:
27/06/2022 136Tập xác định của hàm số \[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] là một khoảng có độ dài n/m, với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m−n bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hàm số\[f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\] xác định
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{lo{g_{\frac{1}{{16}}}}x > 0}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) > 0}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 0}\\{lo{g_4}\left( {lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right)} \right) > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x < 1}\\{lo{g_{\frac{1}{{16}}}}x > 1}\\{\begin{array}{*{20}{c}}{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < 1}\\{lo{g_{\frac{1}{4}}}\left( {lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right)} \right) > 1}\end{array}}\end{array}} \right.} \right.\)</></>
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{lo{g_{\frac{1}{{16}}}}x < 16}\\{lo{g_{16}}\left( {lo{g_{\frac{1}{{16}}}}x} \right) < \frac{1}{4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x < 1}\\{x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^{16}}}\\{lo{g_{\frac{1}{{16}}}}x < {{16}^{\frac{1}{4}}} = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {\frac{1}{{16}}} \right)}^{16}} < x < \frac{1}{{16}}}\\{x > {{\left( {\frac{1}{{16}}} \right)}^2} = \frac{1}{{256}}}\end{array}} \right.\)
\( \Leftrightarrow \frac{1}{{256}} < x < \frac{1}{{16}}\)
Suy ra tập xác định của hàm số đã cho là\[D = \left( {\frac{1}{{256}};\frac{1}{{16}}} \right)\]
⇒ Tập xác định là khoảng có độ dài là\[\frac{1}{{16}} - \frac{1}{{256}} = \frac{{15}}{{256}} \Rightarrow n = 15,\,\,m = 256\]
Vậy\[m - n = 256 - 15 = 241\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Câu 2:
Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?
Câu 3:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Câu 4:
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Câu 5:
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
về câu hỏi!