Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].
A.\[{P_{\min }} = 19\]
B. \[{P_{\min }} = 13\]
C. \[{P_{\min }} = 14\]
D. \[{P_{\min }} = 15\]
Quảng cáo
Trả lời:

Ta có \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\]
\[ \Leftrightarrow P = 4\log _{\frac{a}{b}}^2a + 3\left( {{{\log }_b}a - 1} \right) \Leftrightarrow P = \frac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + 3\left( {\frac{1}{{{{\log }_a}b}} - 1} \right)\]
Đặt\[{\log _a}b = t \Rightarrow 0 < t < 1\] Khi đó \[P = \frac{4}{{{{\left( {t - 1} \right)}^2}}} + \frac{3}{t} - 3\]
\[P' = \frac{{ - 8}}{{{{\left( {t - 1} \right)}^3}}} - \frac{3}{{{t^2}}} = 0 \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0 \Rightarrow t = \frac{1}{3}\]
\[ \Rightarrow {P_{\min }} = 15\]
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[{a^3}{b^4} = 1\]
B. \[3a = 4b\]
C. \[4a = 3b\]
D. \[{a^4}{b^3} = 1\]
Lời giải
Gọi \[H\left( {{x_0};0} \right)\,\,\left( {{x_0} > 1} \right)\] ta có:\[A\left( {{x_0};{{\log }_a}{x_0}} \right);\,\,B\left( {{x_0};{{\log }_b}{x_0}} \right)\]
\[ \Rightarrow HA = {\log _a}{x_0};HB = - {\log _b}{x_0}\] (do\[{\log _a}{x_0} > 0,\,\,{\log _b}{x_0} < 0)\]
Theo bài ra ta có:\[3HA = 4HB \Leftrightarrow 3{\log _a}{x_0} = - 4{\log _b}{x_0}\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow 3{{\log }_a}{x_0} + 4{{\log }_b}{x_0} = 0}\\{ \Leftrightarrow \frac{3}{{{{\log }_{{x_0}}}a}} + \frac{4}{{{{\log }_{{x_0}}}b}} = 0}\\{ \Leftrightarrow \frac{{3{{\log }_{{x_0}}}b + 4{{\log }_{{x_0}}}a}}{{{{\log }_{{x_0}}}b.{{\log }_{{x_0}}}a}} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{b^3} + {{\log }_{{x_0}}}{a^4} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{a^4}{b^3} = 0}\\{ \Leftrightarrow {a^4}{b^3} = 1}\end{array}\]
Đáp án cần chọn là: D
Lời giải
Lấy điểm \[A\left( {{x_0};{a^{{x_0}}}} \right) \in \left( {{C_1}} \right)\] (đồ thị của hàm số \[y = {a^x}\]. Gọi B là điểm đối xứng của A qua M(1;1).
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_B} = 2{x_M} - {x_A} = 2 - {x_0}}\\{{y_B} = 2{y_M} - {y_A} = 2 - {a^{{x_0}}}}\end{array}} \right. \Rightarrow {x_0} = 2 - {x_B} \Rightarrow {y_B} = 2 - {a^{2 - {x_B}}}\)
⇒ Hàm số\[y = f\left( x \right) = 2 - {a^{2 - x}}\]
\[ \Rightarrow f\left( {2 + {{\log }_a}\frac{1}{{2020}}} \right) = 2 - {a^{2 - \left( {2 + {{\log }_a}\frac{1}{{2020}}} \right)}}\]
\[ = 2 - {a^{{{\log }_a}20220}} = 2 - 2020 = - 2018\]
Đáp án cần chọn là: B
Câu 3
A.\[\left( {1; + \infty } \right)\]
B. \[\left[ {1; + \infty } \right)\]
C. \[\left( {0; + \infty } \right)\]
D. \(\mathbb{R}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\left( {1;0} \right)\]
B. \[\left( {a,1} \right)\]
C. \[\left( {{a^2};a} \right)\]
D. \[\left( {{a^2};2} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[({G_1})\]và \[({G_2})\] đối xứng với nhau qua trục hoành.
B. \[({G_1})\]và \[({G_2})\] đối xứng với nhau qua trục tung.
C. \[({G_1})\]và \[({G_2})\] đối xứng với nhau qua đường thẳng y = x.
D. \[({G_1})\]và \[({G_2})\] đối xứng với nhau qua đường thẳng y = −x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.x=1
B.y=0
C.y=1
D.x=0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.Đồ thị (C) có tiệm cận đứng
B.Đồ thị (C) có tiệm cận ngang.
C.Đồ thị (C) cắt trục tung.
D.Đồ thị (C) không cắt trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.