Câu hỏi:
27/06/2022 121Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\]
\[ \Leftrightarrow P = 4\log _{\frac{a}{b}}^2a + 3\left( {{{\log }_b}a - 1} \right) \Leftrightarrow P = \frac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + 3\left( {\frac{1}{{{{\log }_a}b}} - 1} \right)\]
Đặt\[{\log _a}b = t \Rightarrow 0 < t < 1\] Khi đó \[P = \frac{4}{{{{\left( {t - 1} \right)}^2}}} + \frac{3}{t} - 3\]
\[P' = \frac{{ - 8}}{{{{\left( {t - 1} \right)}^3}}} - \frac{3}{{{t^2}}} = 0 \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0 \Rightarrow t = \frac{1}{3}\]
\[ \Rightarrow {P_{\min }} = 15\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Câu 2:
Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?
Câu 3:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Câu 4:
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Câu 5:
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
về câu hỏi!