Câu hỏi:

28/06/2022 164

Mệnh đề nào đúng với mọi số thực dương x,yx,y?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[{2^{\sqrt x }} \ne {x^{\sqrt 2 }}\] nên A sai.

\[{3^{\sqrt {xy} }} = {3^{\sqrt x .\sqrt y }} = {\left( {{3^{\sqrt x }}} \right)^{\sqrt y }}\] nên B đúng.

\[\frac{{{3^{\sqrt[3]{x}}}}}{{{3^{\sqrt[3]{y}}}}} = {3^{\sqrt[3]{x} - \sqrt[3]{y}}} \ne {3^{\sqrt[3]{{x - y}}}}\] nên C sai.

\[{x^{\sqrt 3 }} \ne {y^{\sqrt 3 }}\] nếu \[x \ne y\] nên D sai.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:

Xem đáp án » 28/06/2022 646

Câu 2:

Cho \[a \ge 0,m,n \in {N^ * }\] chọn đẳng thức đúng:

Xem đáp án » 28/06/2022 555

Câu 3:

Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?

Xem đáp án » 28/06/2022 524

Câu 4:

Cho \[a > 0,b < 0,\alpha \notin Z,n \in {N^ * }\]. khi đó biểu thức nào dưới đây không có nghĩa?

Xem đáp án » 28/06/2022 372

Câu 5:

Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].

Xem đáp án » 28/06/2022 363

Câu 6:

Cho \[a > 0,n \in Z,n \ge 2\], chọn khẳng định đúng:

Xem đáp án » 28/06/2022 360

Câu 7:

Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:

Xem đáp án » 28/06/2022 348

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store