Câu hỏi:

28/06/2022 311 Lưu

Mệnh đề nào đúng với mọi số thực dương x,yx,y?

A.\[{2^{\sqrt x }} = {x^{\sqrt 2 }}\]

B. \[{3^{\sqrt {xy} }} = {\left( {{3^{\sqrt x }}} \right)^{\sqrt y }}\]

C. \[\frac{{{3^{\sqrt[3]{x}}}}}{{{3^{\sqrt[3]{y}}}}} = {3^{\sqrt[3]{{x - y}}}}\]

D. \[{x^{\sqrt 3 }} = {y^{\sqrt 3 }}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\[{2^{\sqrt x }} \ne {x^{\sqrt 2 }}\] nên A sai.

\[{3^{\sqrt {xy} }} = {3^{\sqrt x .\sqrt y }} = {\left( {{3^{\sqrt x }}} \right)^{\sqrt y }}\] nên B đúng.

\[\frac{{{3^{\sqrt[3]{x}}}}}{{{3^{\sqrt[3]{y}}}}} = {3^{\sqrt[3]{x} - \sqrt[3]{y}}} \ne {3^{\sqrt[3]{{x - y}}}}\] nên C sai.

\[{x^{\sqrt 3 }} \ne {y^{\sqrt 3 }}\] nếu \[x \ne y\] nên D sai.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[a \ge 3\;\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]

B. a < 3 

C.2 < a ≤ 3 

D. a > 2 

Lời giải

Vì \[ - \frac{1}{4} > - \frac{1}{3}\] nên \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}} \Leftrightarrow 0 < a - 2 \le 1 \Leftrightarrow 2 < a \le 3\]

Đáp án cần chọn là: C

Câu 2

A.\[{b^n} = a\]

B. \[{a^n} = b\]

C. \[{a^n} = {b^n}\]

D. \[{n^a} = b\]

Lời giải

Cho số thực b và số nguyên dương \[n\left( {n \ge 2} \right)\] Số a được gọi là căn bậc n của số b nếu \[{a^n} = b\].

Đáp án cần chọn là: B

Câu 3

A.\[\sqrt[{mn}]{a} = \sqrt[n]{a}\sqrt[m]{a}\]

B. \[\sqrt[{mn}]{a} = \sqrt[n]{{{a^m}}}\]

C. \[\sqrt[{mn}]{a} = \sqrt[m]{{{a^n}}}\]

D. \[\sqrt[{mn}]{a} = \sqrt[n]{{\sqrt[m]{a}}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[{a^{\frac{1}{n}}} = \sqrt[n]{a}\]

B. \[{a^{\frac{1}{n}}} = \sqrt {{a^n}} \]

C. \[{a^{\frac{1}{n}}} = {a^n}\]

D. \[{a^{\frac{1}{n}}} = \sqrt[a]{n}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP