Câu hỏi:
28/06/2022 121Thu gọn biểu thức \[P = \sqrt[5]{{{x^2}\sqrt[3]{x}}}\,\,\,(x > 0)\] ta được kết quả là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[P = \sqrt[5]{{{x^2}\sqrt[3]{x}}} = \sqrt[5]{{{x^2}.{x^{\frac{1}{3}}}}} = {\left( {{x^{2 + \frac{1}{3}}}} \right)^{\frac{1}{5}}}\]
Vậy \[P = {x^{\frac{7}{{15}}}}.\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:
Câu 3:
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Câu 4:
Cho \[a > 0,b < 0,\alpha \notin Z,n \in {N^ * }\]. khi đó biểu thức nào dưới đây không có nghĩa?
Câu 5:
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Câu 7:
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
về câu hỏi!