Câu hỏi:

28/06/2022 394

Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
\[\begin{array}{*{20}{l}}{P = {{\left( {2\sqrt 6 - 5} \right)}^{2020}}{{\left( {2\sqrt 6 + 5} \right)}^{2021}}}\\{\,\,\,\,\, = {{\left[ {\left( {2\sqrt 6 - 5} \right)\left( {2\sqrt 6 + 5} \right)} \right]}^{2020}}.\left( {2\sqrt 6 + 5} \right)}\\{\,\,\,\, = {{\left( {24 - 25} \right)}^{2020}}.\left( {2\sqrt 6 + 5} \right) = 2\sqrt 6 + 5}\end{array}\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:

Xem đáp án » 28/06/2022 2,285

Câu 2:

Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:

Xem đáp án » 28/06/2022 1,074

Câu 3:

Cho \[a \ge 0,m,n \in {N^ * }\] chọn đẳng thức đúng:

Xem đáp án » 28/06/2022 1,063

Câu 4:

Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?

Xem đáp án » 28/06/2022 965

Câu 5:

Rút gọn biểu thức: \[C = \frac{{{{\left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)}^2}}}{{\sqrt[3]{{ab}}}}:\left( {2 + \sqrt[3]{{\frac{a}{b}}} + \sqrt[3]{{\frac{b}{a}}}} \right)\] ta được kết quả là:

Xem đáp án » 28/06/2022 890

Câu 6:

Cho \[a > 0,n \in Z,n \ge 2\], chọn khẳng định đúng:

Xem đáp án » 28/06/2022 469

Câu 7:

Cho \[a > 0,b < 0,\alpha \notin Z,n \in {N^ * }\]. khi đó biểu thức nào dưới đây không có nghĩa?

Xem đáp án » 28/06/2022 446