Câu hỏi:

28/06/2022 354

Rút gọn biểu thức \[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\left( {a > 0,b > 0,a \ne b} \right)\] ta được kết quả là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\]

\[ = \left( {\frac{{\sqrt {ab} \left( {a + \sqrt {ab} } \right) - ab}}{{a + \sqrt {ab} }}} \right).\frac{{a - b}}{{\sqrt[4]{{ab}} - {{\left( {\sqrt[4]{b}} \right)}^2}}}\]

\[ = \frac{{a.\sqrt {ab} + ab - ab}}{{{{\left( {\sqrt a } \right)}^2} + \sqrt a .\sqrt b }}.\frac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}}\]

\[ = \frac{{a\sqrt {ab} }}{{\sqrt a \left( {\sqrt a + \sqrt b } \right)}}.\frac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}} = \frac{{a\sqrt a .\sqrt b }}{{\sqrt a }}.\frac{{{{\left( {\sqrt[4]{a}} \right)}^2} - {{\left( {\sqrt[4]{b}} \right)}^2}}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}}\]

\[ = \frac{{a\sqrt b .\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}} = \frac{{a{{\left( {\sqrt[4]{b}} \right)}^2}.\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)}}{{\sqrt[4]{b}}} = a\sqrt[4]{b}\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)\]

Vậy \[P = a\sqrt[4]{b}(\sqrt[4]{a} + \sqrt[4]{b}).\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:

Xem đáp án » 28/06/2022 2,268

Câu 2:

Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:

Xem đáp án » 28/06/2022 1,070

Câu 3:

Cho \[a \ge 0,m,n \in {N^ * }\] chọn đẳng thức đúng:

Xem đáp án » 28/06/2022 1,061

Câu 4:

Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?

Xem đáp án » 28/06/2022 962

Câu 5:

Rút gọn biểu thức: \[C = \frac{{{{\left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)}^2}}}{{\sqrt[3]{{ab}}}}:\left( {2 + \sqrt[3]{{\frac{a}{b}}} + \sqrt[3]{{\frac{b}{a}}}} \right)\] ta được kết quả là:

Xem đáp án » 28/06/2022 887

Câu 6:

Cho \[a > 0,n \in Z,n \ge 2\], chọn khẳng định đúng:

Xem đáp án » 28/06/2022 467

Câu 7:

Cho \[a > 0,b < 0,\alpha \notin Z,n \in {N^ * }\]. khi đó biểu thức nào dưới đây không có nghĩa?

Xem đáp án » 28/06/2022 446