Câu hỏi:
28/06/2022 219Rút gọn biểu thức \[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\left( {a > 0,b > 0,a \ne b} \right)\] ta được kết quả là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\]
\[ = \left( {\frac{{\sqrt {ab} \left( {a + \sqrt {ab} } \right) - ab}}{{a + \sqrt {ab} }}} \right).\frac{{a - b}}{{\sqrt[4]{{ab}} - {{\left( {\sqrt[4]{b}} \right)}^2}}}\]
\[ = \frac{{a.\sqrt {ab} + ab - ab}}{{{{\left( {\sqrt a } \right)}^2} + \sqrt a .\sqrt b }}.\frac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}}\]
\[ = \frac{{a\sqrt {ab} }}{{\sqrt a \left( {\sqrt a + \sqrt b } \right)}}.\frac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}} = \frac{{a\sqrt a .\sqrt b }}{{\sqrt a }}.\frac{{{{\left( {\sqrt[4]{a}} \right)}^2} - {{\left( {\sqrt[4]{b}} \right)}^2}}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}}\]
\[ = \frac{{a\sqrt b .\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)}}{{\sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)}} = \frac{{a{{\left( {\sqrt[4]{b}} \right)}^2}.\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)}}{{\sqrt[4]{b}}} = a\sqrt[4]{b}\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)\]
Vậy \[P = a\sqrt[4]{b}(\sqrt[4]{a} + \sqrt[4]{b}).\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:
Câu 3:
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Câu 4:
Cho \[a > 0,b < 0,\alpha \notin Z,n \in {N^ * }\]. khi đó biểu thức nào dưới đây không có nghĩa?
Câu 5:
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Câu 7:
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
về câu hỏi!