Câu hỏi:

28/06/2022 258

 Đơn giản biểu thức \[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\] ta được:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}.{\left( {{a^{ - 1}}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}.{a^{ - \sqrt 2 + 1}} = {a^{\sqrt 2 - \sqrt 2 + 1}} = a\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Vì \[ - \frac{1}{4} > - \frac{1}{3}\] nên \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}} \Leftrightarrow 0 < a - 2 \le 1 \Leftrightarrow 2 < a \le 3\]

Đáp án cần chọn là: C

Câu 2

Lời giải

Cho số thực b và số nguyên dương \[n\left( {n \ge 2} \right)\] Số a được gọi là căn bậc n của số b nếu \[{a^n} = b\].

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP