Câu hỏi:
11/07/2024 8,260Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:
Quảng cáo
Trả lời:
Bước 1: Giải phương trình\[f'\left( x \right) = 0\]
Ta có:
\[f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0(nghiem\,boi\,chan)}\\{{x^2} - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1(nghiem\,boi\,le)}\\{x = - 1(nghiem\,boi\,le)}\end{array}} \right.}\end{array}} \right.\]
Bước 2: Lập BBT của hàm số từ đó xác định điểm cực tiểu của hàm số.
BBT:
Vậy điểm cực tiểu của hàm số là x=1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1:
\[y' = 3{x^2} - 6x\]
\[y\prime = 0 \Leftrightarrow 3x(x - 2) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\]
Từ đây suy ra hai điểm cực trị có tọa độ A(0,1) và B(2,−3).
Phương trình đường thẳng qua hai điểm A,B là\[\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\]
\[ \Leftrightarrow - 4x = 2\left( {y - 1} \right) \Leftrightarrow y = - 2x + 1.\]
Cách 2:
Ta có \[y' = 3{x^2} - 6x\]
Khi đó \[{x^3} - 3{x^2} + 1 = \left( {3{x^2} - 6x} \right)\left( {\frac{1}{3}x - \frac{1}{3}} \right) - 2x + 1\]
Vậy đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là\[y = - 2x + 1\]Cách 3:
Bước 1:
\[y' = 3{x^2} - 6x;y'' = 6x - 6\]
Bước 2:
Bước 3: Ta được a=1 và b=-2
Vậy đường thẳng là: \[y = - 2x + 1\]
Đáp án cần chọn là: A
Lời giải
\[\begin{array}{*{20}{l}}{y = {x^3} - 3x + 2 \Rightarrow y' = 3{x^2} - 3}\\{y' = 0 \Leftrightarrow x = \; \pm 1}\end{array}\]
Tọa độ 2 điểm cực trị : A(1;0),B(−1;4)
Khi đó
\[{S_{{\rm{\Delta }}OAB}} = \frac{1}{2}.OA.d(B,OA) = \frac{1}{2}.\left| {{x_A}} \right|.\left| {{y_B}} \right| = \frac{1}{2}.\left| 1 \right|.\left| 4 \right| = 2\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận