Câu hỏi:
28/06/2022 279Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Xét hàm số \[g\left( x \right) = f({x^3} + 2x) + m\]. Giá trị của tham số m để giá trị lớn nhất của hàm số g(x) trên đoạn \[\left[ {0;1} \right]\;\]bằng 9 là:
Quảng cáo
Trả lời:
Ta có :\[g'\left( x \right) = \left( {3{x^2} + 2} \right).f'\left( {{x^3} + 2x} \right)\]
\[g\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3{x^2} + 2 = 0}\\{f\prime ({x^3} + 2x) = 0}\end{array}} \right. \Leftrightarrow f\prime ({x^3} + 2x) = 0\](Do phương trình \[3{x^2} + 2 = 0\;\]vô nghiệm).
Từ đồ thị hàm số f(x) đã cho ta có
\[f\prime ({x^3} + 2x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x^3} + 2x = 0}\\{{x^3} + 2x = 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = {x_0} \approx 0,77}\end{array}} \right.\]
Hàm số g(x) trên đoạn \[\left[ {0;1} \right]\]có :
\[\begin{array}{*{20}{l}}{g\left( 0 \right) = f\left( 0 \right) + m = m + 1}\\{g\left( {{x_0}} \right) = f\left( 2 \right) + m = m - 3}\\{g\left( 1 \right) = f\left( 3 \right) + m = m + 1}\end{array}\]
Do đó,\[\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = g\left( 1 \right) = m + 1\]
Theo giả thiết, giá trị lớn nhất của hàm số g(x) trên \[\left[ {0;1} \right]\]bằng 9 nên\[m + 1 = 9 \Leftrightarrow m = 8\]
Vậy m=8.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[y' = \cos x \Rightarrow y' = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]
Do\[x \in \left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]\]nên\[k = - 1\]hay\[x = - \frac{\pi }{2}\]
Suy ra
\[y( - \frac{\pi }{2}) = - 1;y( - \frac{\pi }{3}) = - \frac{{\sqrt 3 }}{2}\]
\(\left\{ {\begin{array}{*{20}{c}}{\mathop {\max }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - \frac{{\sqrt 3 }}{2}}\\{\mathop {\min }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - 1}\end{array}} \right.\)
Đáp án cần chọn là: B
Lời giải
TXĐ: \[R \setminus \left\{ 0 \right\}\]
\[y' = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}\]
\[y' = 0 \Leftrightarrow \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x = 1(tm)\]hoặc\[x = - 1(ktm)\]
Bảng biến thiên:
\[ \Rightarrow \mathop {Min}\limits_{x \in \left( {0; + \infty } \right)} \,y = f\left( 1 \right) = 2\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)