Câu hỏi:
28/06/2022 216Quảng cáo
Trả lời:
Bất phương trình \[f(x) > sin\frac{{\pi x}}{2} + m\;\] nghiệm đúng với mọi \[x \in [ - 1;3]\] khi và chỉ khi:
\[f(x) > sin\frac{{\pi x}}{2} + m\forall x \in [ - 1;3] \Leftrightarrow g(x) = f(x) - sin\frac{{\pi x}}{2} > m\forall x \in [ - 1;3] \Rightarrow m < \mathop {min}\limits_{[ - 1;3]} g(x)\]
Từ đồ thị hàm số\[y = f'\left( x \right)\] ta suy ra BBT đồ thị hàm số \[y = f\left( x \right)\] như sau:
Dựa vào BBT ta thấy\[f\left( x \right) \ge f\left( 1 \right)\,\,\forall x \in \left[ { - 1;3} \right]\]
\[\begin{array}{*{20}{l}}{x \in \left[ { - 1;3} \right] \Rightarrow \frac{{\pi x}}{2} \in \left[ { - \frac{\pi }{2};\frac{{3\pi }}{2}} \right] \Rightarrow - 1 \le \sin \frac{{\pi x}}{2} \le 1}\\{ \Leftrightarrow - 1 \le - \sin \frac{{\pi x}}{2} \le 1}\end{array}\]
\[ \Rightarrow f\left( 1 \right) - 1 \le f\left( x \right) - \sin \frac{{\pi x}}{2} \Leftrightarrow g\left( x \right) \ge f\left( 1 \right) - 1 \Rightarrow \mathop {\min }\limits_{\left[ { - 1;3} \right]} g\left( x \right) = f\left( 1 \right) - 1\]
Vậy\[m < f\left( 1 \right) - 1\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[y' = \cos x \Rightarrow y' = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]
Do\[x \in \left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]\]nên\[k = - 1\]hay\[x = - \frac{\pi }{2}\]
Suy ra
\[y( - \frac{\pi }{2}) = - 1;y( - \frac{\pi }{3}) = - \frac{{\sqrt 3 }}{2}\]
\(\left\{ {\begin{array}{*{20}{c}}{\mathop {\max }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - \frac{{\sqrt 3 }}{2}}\\{\mathop {\min }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - 1}\end{array}} \right.\)
Đáp án cần chọn là: B
Lời giải
TXĐ: \[R \setminus \left\{ 0 \right\}\]
\[y' = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}\]
\[y' = 0 \Leftrightarrow \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x = 1(tm)\]hoặc\[x = - 1(ktm)\]
Bảng biến thiên:
\[ \Rightarrow \mathop {Min}\limits_{x \in \left( {0; + \infty } \right)} \,y = f\left( 1 \right) = 2\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)