Cho \[f\left( x \right) = \frac{1}{{{x^2} - 4x + 5}} - \frac{{{x^2}}}{4} + x\] Gọi \[M = \mathop {Max}\limits_{x \in \left[ {0;3} \right]} f(x);\;m = \mathop {Min}\limits_{x \in \left[ {0;3} \right]} f\left( x \right)\] Khi đó M−m bằng:
Quảng cáo
Trả lời:
Ta có :
\[\begin{array}{*{20}{l}}{f\left( x \right) = \frac{1}{{{x^2} - 4x + 5}} - \frac{{{x^2}}}{4} + x}\\{f\left( x \right) = \frac{1}{{{x^2} - 4x + 5}} - \frac{{{x^2} - 4x}}{4}}\end{array}\]
Đặt\[t = {x^2} - 4x + 5\] với \[x \in \left[ {0;3} \right]\] ta có\[t' = 2x - 4 = 0 \Leftrightarrow x = 2 \in \left[ {0;3} \right]\]
Ta có \[t\left( 0 \right) = 5;\,\,t\left( 2 \right) = 1,\,\,t\left( 3 \right) = 2\]
⇒ Với\[x \in \left[ {0;3} \right]\] thì\[t \in \left[ {1;5} \right]\] khi đó hàm số trở thành\[f\left( t \right) = \frac{1}{t} - \frac{{t - 5}}{4}\] với\[t \in \left[ {1;5} \right]\]
Ta có\[f'\left( t \right) = - \frac{1}{{{t^2}}} - \frac{1}{4} < 0\,\,\forall t \in \left[ {1;5} \right]\]
⇒ Hàm số\[y = f\left( t \right)\] nghịch biến trên\[\left[ {1;5} \right]\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\mathop {max}\limits_{[0;3]} f(x) = \mathop {max}\limits_{[1;5]} f(t) = f(1) = 2 = M}\\{\mathop {min}\limits_{[0;3]} f(x) = \mathop {min}\limits_{[1;5]} f(t) = f(5) = \frac{1}{5} = m}\end{array}} \right.\)
Vậy \[M - m = 2 - \frac{1}{5} = \frac{9}{5}\]
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[y' = \cos x \Rightarrow y' = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]
Do\[x \in \left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]\]nên\[k = - 1\]hay\[x = - \frac{\pi }{2}\]
Suy ra
\[y( - \frac{\pi }{2}) = - 1;y( - \frac{\pi }{3}) = - \frac{{\sqrt 3 }}{2}\]
\(\left\{ {\begin{array}{*{20}{c}}{\mathop {\max }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - \frac{{\sqrt 3 }}{2}}\\{\mathop {\min }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - 1}\end{array}} \right.\)
Đáp án cần chọn là: B
Lời giải
TXĐ: \[R \setminus \left\{ 0 \right\}\]
\[y' = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}\]
\[y' = 0 \Leftrightarrow \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x = 1(tm)\]hoặc\[x = - 1(ktm)\]
Bảng biến thiên:
\[ \Rightarrow \mathop {Min}\limits_{x \in \left( {0; + \infty } \right)} \,y = f\left( 1 \right) = 2\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.