Câu hỏi:

28/06/2022 545

Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {2 + 3{x^2}} \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Họ nguyên hàm của hàm số đã cho là:

\[\smallint f\left( x \right)dx = \smallint \left( {2x + 3{x^3}} \right)dx = \smallint 2xdx + \smallint 3{x^3}dx = 2\smallint xdx + 3\smallint {x^3}dx\]

\[ = 2.\frac{{{x^2}}}{2} + 3.\frac{{{x^4}}}{4} + C = {x^2} + \frac{{3{x^4}}}{4} + C = {x^2}\left( {1 + \frac{3}{4}{x^2}} \right) + C\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu\[F'\left( x \right) = f\left( x \right)\]

Đáp án cần chọn là: C

Lời giải

Vì\[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số\[f\left( x \right){e^{4x}}\] nên:

\[\begin{array}{*{20}{l}}{f\left( x \right){e^{4x}} = F'\left( x \right) = 2x}\\{ \Rightarrow f\left( x \right) = \frac{{2x}}{{{e^{4x}}}}}\end{array}\]

\[\begin{array}{*{20}{l}}{ \Rightarrow f'\left( x \right) = \frac{{2{e^{4x}} - 8x.{e^{4x}}}}{{{{\left( {{e^{4x}}} \right)}^2}}} = \frac{{2 - 8x}}{{{e^{4x}}}}}\\{ \Rightarrow f'\left( x \right){e^{4x}} = 2 - 8x}\\{ \Rightarrow \smallint f'\left( x \right){e^{4x}}dx = \smallint \left( {2 - 8x} \right)dx = - 4{x^2} + 2x + C}\end{array}\]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP