Câu hỏi:
28/06/2022 888Biết \[\mathop \smallint \limits_0^{\frac{\pi }{4}} x.c{\rm{os}}2xdx = a + b\pi \], với a,b là các số hữu tỉ. Tính S=a+2b.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)
Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)
\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)
\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết tích phân \[I = \mathop \smallint \limits_0^1 x{e^{2x}}dx = a{e^2} + b\] (a,b là các số hữu tỉ). Khi đó tổng a+b là:
Câu 2:
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Câu 3:
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Câu 4:
Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]
Câu 5:
Cho hàm số f(x) là hàm số chẵn và liên tục trên \[\left[ { - 1;1} \right]\] thỏa mãn: \[\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx = \frac{{86}}{{15}}\] và \[f\left( 1 \right) = 5\]. Khi đó \[\mathop \smallint \limits_0^1 xf'\left( x \right)dx\] bằng:
Câu 6:
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!