Câu hỏi:
28/06/2022 1,439Biết tích phân \[I = \mathop \smallint \limits_0^1 x{e^{2x}}dx = a{e^2} + b\] (a,b là các số hữu tỉ). Khi đó tổng a+b là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)
\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)
\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \[\mathop \smallint \limits_0^{\frac{\pi }{4}} x.c{\rm{os}}2xdx = a + b\pi \], với a,b là các số hữu tỉ. Tính S=a+2b.
Câu 2:
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Câu 3:
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Câu 4:
Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]
Câu 5:
Cho hàm số f(x) là hàm số chẵn và liên tục trên \[\left[ { - 1;1} \right]\] thỏa mãn: \[\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx = \frac{{86}}{{15}}\] và \[f\left( 1 \right) = 5\]. Khi đó \[\mathop \smallint \limits_0^1 xf'\left( x \right)dx\] bằng:
Câu 6:
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
về câu hỏi!