ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp tích phân từng phần để tính tích phân
40 người thi tuần này 4.6 799 lượt thi 28 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx}\\{v = g(x)}\end{array}} \right.\) khi đó
\[I = f\left( x \right).g\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f'\left( x \right)} .g\left( x \right)dx\]
Đáp án cần chọn là: C
Lời giải
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {x^2}}\\{dv = cosxdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2xdx}\\{v = sinx}\end{array}} \right.\)khi đó\[I = {x^2}sinx\left| {_0^{\frac{\pi }{2}}} \right. - 2\int\limits_0^{\frac{\pi }{2}} {xsinxdx} \]
Đáp án cần chọn là: B
Lời giải
Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = g(x)}\\{dv = f\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = g\prime (x)dx}\\{v = f(x)}\end{array}} \right.\)
Khi đó
\[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = \left[ {g(x).f(x)} \right]\left| {_0^1} \right. - \int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx\]
\( \Leftrightarrow \left[ {g(x).f(x)} \right]\left| {_0^1} \right. = 3\)
Mặt khác\(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx = \left[ {f\left( x \right).g\left( x \right)} \right]\left| {_0^1} \right. \Rightarrow I = 3\)
Đáp án cần chọn là: C
Lời giải
Vì \[{x^2}\] là một nguyên hàm của hàm số\[f\left( x \right){e^{2x}} \Rightarrow \smallint f\left( x \right){e^{2x}}\,{\rm{d}}x = {x^2}.\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {e^{2x}}}\\{dv = f\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2{e^{2x}}dx}\\{v = f(x)}\end{array}} \right.\) khi đó
\(\int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx = f(x){e^{2x}}\left| {_0^1} \right. - 2\int\limits_0^1 {f(x){e^{2x}}dx} \)
Suy ra\[I = {e^2}f(1) - f(0) - 2{x^2}\left| {_0^1} \right. = 2 - 0 - 2 = 0\]
Vậy\[I = 0\]
Đáp án cần chọn là: A
Lời giải
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x + lnx}\\{dv = \frac{{dx}}{{{{(x + 1)}^3}}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{x + 1}}{x}dx}\\{v = - \frac{1}{{2{{(x + 1)}^2}}}}\end{array}} \right.\)
Khi đó\[I = - \frac{{x + lnx}}{{2{{(x + 1)}^2}}}\left| {_1^2} \right. + \int\limits_1^2 {\frac{{x + 1}}{x}.\frac{1}{{2{{(x + 1)}^2}}}} dx\]
\[ = - \frac{{2 + \ln 2}}{{18}} + \frac{1}{8} + \frac{1}{2}\mathop \smallint \limits_1^2 \frac{{{\rm{d}}x}}{{x\left( {x + 1} \right)}}\]
\[ = - \frac{{2 + \ln 2}}{{18}} + \frac{1}{8} + \frac{1}{2}\mathop \smallint \limits_1^2 \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right){\rm{d}}x.\]
\( = - \frac{{2 + ln2}}{{18}} + \frac{1}{8} + \frac{1}{2}(ln|x| - ln|x + 1|)\left| {_1^2} \right.\)
\(\begin{array}{l} = \frac{1}{{72}} - \frac{1}{{18}}ln2 + \frac{1}{2}(ln2 - ln3 + ln2)\\ = \frac{1}{{72}} + \frac{{17}}{{18}}ln2 - \frac{1}{2}\ln 3\\ = a + b.ln2 - c.ln3\end{array}\)
Vậy\(\left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{{72}}}\\{b = \frac{{17}}{{18}}}\\{c = \frac{1}{2}}\end{array}} \right. \Rightarrow \frac{c}{a} = \frac{1}{2}:\frac{1}{{72}} = 36\)
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
160 Đánh giá
50%
40%
0%
0%
0%