Câu hỏi:

28/06/2022 222 Lưu

Tính tích phân \[I = \mathop \smallint \limits_1^{{2^{1000}}} \frac{{\ln x}}{{{{(x + 1)}^2}}}dx\]

A.\[I = - \frac{{\ln {2^{1000}}}}{{1 + {2^{1000}}}} + \ln \frac{{{2^{1001}}}}{{1 + {2^{1000}}}}\]

B. \[I = - \frac{{1000\ln 2}}{{1 + {2^{1000}}}} + \ln \frac{{{2^{1000}}}}{{1 + {2^{1000}}}}\]

C. \[I = \frac{{\ln {2^{1000}}}}{{1 + {2^{1000}}}} - 1001\ln \frac{2}{{1 + {2^{1000}}}}\]

D. \[I = \frac{{1000\ln 2}}{{1 + {2^{1000}}}} - \ln \frac{{{2^{1000}}}}{{1 + {2^{1000}}}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = \ln x}\\{dv = \frac{{dx}}{{{{(x + 1)}^2}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{dx}}{x}}\\{v = - \frac{1}{{x + 1}}}\end{array}} \right.\)

\(\begin{array}{l} \Rightarrow I = - \frac{{lnx}}{{x + 1}}\left| {_1^{{2^{1000}}}} \right. + \int\limits_1^{{2^{1000}}} {\frac{1}{{x + 1}}} .\frac{{dx}}{x}\\ = - \frac{{\ln {2^{1000}}}}{{{2^{1000}} + 1}} + \int\limits_1^{{2^{1000}}} {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)} dx\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \left| {\frac{x}{{x + 1}}} \right|\left| {_1^{{2^{1000}}}} \right.\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1000}}}}{{{2^{1000}} + 1}} - \ln \frac{1}{2}\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1001}}}}{{{2^{1000}} + 1}}\end{array}\)

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)

\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)

\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]

Đáp án cần chọn là: A

Lời giải

Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)

Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)

\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)

\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]

Đáp án cần chọn là: A

Câu 3

A.\[I = f\left( x \right).g'\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f'\left( x \right)} .g\left( x \right)dx\]

B. \[I = f\left( x \right).g\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f\left( x \right)} .g\left( x \right)dx\]

C. \[I = f\left( x \right).g\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f'\left( x \right)} .g\left( x \right)dx\]

D. \[I = f\left( x \right).g'\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f\left( x \right)} .g'\left( x \right)dx\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = xcosxdx}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{u = {x^2}}\\{dv = cosxdx}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{u = cosx}\\{dv = {x^2}dx}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{u = {x^2}cosx}\\{dv = dx}\end{array}} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[I = \frac{1}{2}\]

B. \[I = \frac{{3{e^2} + 1}}{4}\]

C. \[I = \frac{{{e^2} + 1}}{4}\]

D. \[I = \frac{{{e^2} - 1}}{4}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP