Câu hỏi:

28/06/2022 253

Biết rằng\[\smallint {e^{2x}}\cos 3xdx = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c\], trong đó a,b,c là các hằng số, khi đó tổng a+b có giá trị là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt\[f\left( x \right) = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c\]

Ta có

\[f'\left( x \right) = 2a{e^{2x}}\cos 3x - 3a{e^{2x}}\sin 3x + 2b{e^{2x}}\sin 3x + 3b{e^{2x}}\cos 3x\]

\[ = \left( {2a + 3b} \right){e^{2x}}\cos 3x + \left( {2b - 3a} \right){e^{2x}}\sin 3x\]

Để f(x) là một nguyên hàm của hàm số \[{e^{2x}}\cos x\], điều kiện là\[f\prime (x) = {e^{2x}}cos3x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2a + 3b = 1}\\{2b - 3a = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{2}{{13}}}\\{b = \frac{3}{{13}}}\end{array} \Rightarrow a + b = \frac{5}{{13}}} \right.\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)

\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)

\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]

Đáp án cần chọn là: A

Lời giải

Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)

Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)

\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)

\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP