Câu hỏi:
28/06/2022 275Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện \[x.f({x^3}) + f({x^2} - 1) = {e^{{x^2}}},\;\forall x \in \mathbb{R}\]. Khi đó giá trị của \(\int\limits_{ - 1}^0 {f\left( x \right)dx} \) là:
Quảng cáo
Trả lời:
Ta có: \[x.f\left( {{x^3}} \right) + f\left( {{x^2} - 1} \right) = {e^{{x^2}}} \Leftrightarrow {x^2}.f\left( {{x^3}} \right) + xf\left( {{x^2} - 1} \right) = x{e^{{x^2}}}\]
Lấy tích phân tư -1 đến 0 hai vế phương trình ta có:
\[\mathop \smallint \limits_{ - 1}^0 {x^2}.f\left( {{x^3}} \right)dx + \mathop \smallint \limits_{ - 1}^0 xf\left( {{x^2} - 1} \right)dx = \mathop \smallint \limits_{ - 1}^0 x{e^{{x^2}}}dx\,\,\left( * \right)\]
Xét\[{I_1} = \mathop \smallint \limits_{ - 1}^0 {x^2}.f\left( {{x^3}} \right)dx\]
Đặt\[t = {x^3} \Rightarrow dt = 3{x^2}dx \Rightarrow {x^2}dx = \frac{{dt}}{3}\]
Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow t = - 1}\\{x = 0 \Rightarrow t = 0}\end{array}} \right.\) khi đó ta có:\[{I_1} = \frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( t \right)dt = \frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx\]
Xét \[{I_2} = \mathop \smallint \limits_{ - 1}^0 xf\left( {{x^2} - 1} \right)dx\]
Đặt\[u = {x^2} - 1 \Rightarrow du = 2xdx \Rightarrow xdx = \frac{1}{2}du\]
Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow u = 0}\\{x = 0 \Rightarrow u = - 1}\end{array}} \right.\) khi đó ta có\[{I_2} = \frac{1}{2}\mathop \smallint \limits_0^{ - 1} f\left( u \right)du = - \frac{1}{2}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx\]
Xét \[{I_3} = \mathop \smallint \limits_{ - 1}^0 x{e^{{x^2}}}dx\]
Đặt\[v = {x^2} \Rightarrow dv = 2xdx \Rightarrow xdx = \frac{1}{2}dv\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow v = 1}\\{x = 0 \Rightarrow v = 0}\end{array}} \right.\) khi đó ta có
\({I_3} = \frac{1}{2}\int\limits_0^1 {{e^v}dv = } \frac{1}{2}{e^v}\left| {_0^1} \right. = \frac{1}{2} - \frac{e}{2} = \frac{{1 - e}}{2}\)
Thay tất cả vào (*) ta có:
\[\begin{array}{*{20}{l}}{\frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx - \frac{1}{2}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = \frac{{1 - e}}{2}}\\{ \Leftrightarrow - \frac{1}{6}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = \frac{{1 - e}}{2}}\\{ \Leftrightarrow \mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = 3\left( {e - 1} \right)}\end{array}\]
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)
\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)
\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]
Đáp án cần chọn là: A
Lời giải
Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)
Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)
\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)
\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.