Câu hỏi:
28/06/2022 141Nếu \[\mathop \smallint \limits_0^\pi f\left( x \right)\sin xdx = 20,\mathop \smallint \limits_0^\pi xf\left( x \right)'\sin xdx = 5\]thì\[I = \mathop \smallint \limits_0^{{\pi ^2}} f\left( {\sqrt x } \right)\cos \left( {\sqrt x } \right)dx\] bằng:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét tích phân\[I = \mathop \smallint \limits_0^{{\pi ^2}} f\left( {\sqrt x } \right)\cos \left( {\sqrt x } \right)dx\]
Đặt\[t = \sqrt x \Rightarrow {t^2} = x \Rightarrow 2tdt = dx\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 0}\\{x = {\pi ^2} \Rightarrow t = \pi }\end{array}} \right.\) khi đó ta có
\[I = \mathop \smallint \limits_0^\pi f\left( t \right)\cos \left( t \right)2tdt = \mathop \smallint \limits_0^\pi 2f\left( x \right)\cos x.xdx\]
Xét tích phân\[\mathop \smallint \limits_0^\pi xf'\left( x \right)\sin xdx = 5\]
Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = xsinx}\\{f\prime (x)dx = dv}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = (sinx + xcosx)du}\\{v = f(x)}\end{array}} \right.\)
\[\begin{array}{l}\mathop \smallint \limits_0^\pi xf\left( x \right)'\sin xdx = 5\\ \Leftrightarrow (xsinx.f(x))\left| {_0^\pi } \right. - \int\limits_0^\pi {[f(x)sinx + xf(x)cosx]dx = 5} \end{array}\]
\( \Leftrightarrow - \int\limits_0^\pi {f(x)sinxdx - \int\limits_0^\pi {xf(x)cosxdx = 5} } \)
\[\begin{array}{l} \Leftrightarrow - 20 - \frac{I}{2} = 5\\ \Leftrightarrow \frac{I}{2} = - 25\\ \Leftrightarrow I = - 50\end{array}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết tích phân \[I = \mathop \smallint \limits_0^1 x{e^{2x}}dx = a{e^2} + b\] (a,b là các số hữu tỉ). Khi đó tổng a+b là:
Câu 2:
Biết \[\mathop \smallint \limits_0^{\frac{\pi }{4}} x.c{\rm{os}}2xdx = a + b\pi \], với a,b là các số hữu tỉ. Tính S=a+2b.
Câu 3:
Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt
Câu 4:
Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì
Câu 5:
Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]
Câu 6:
Cho hàm số f(x) là hàm số chẵn và liên tục trên \[\left[ { - 1;1} \right]\] thỏa mãn: \[\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx = \frac{{86}}{{15}}\] và \[f\left( 1 \right) = 5\]. Khi đó \[\mathop \smallint \limits_0^1 xf'\left( x \right)dx\] bằng:
Câu 7:
Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!