Câu hỏi:
28/06/2022 259Cho tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} \frac{{\ln \left( {3\sin x + \cos x} \right)}}{{{{\sin }^2}x}}{\rm{d}}x = m.\ln \sqrt 2 + n.\ln 3 - \frac{\pi }{4}\], tổng m+n
Quảng cáo
Trả lời:
Đặt
\(\left\{ {\begin{array}{*{20}{c}}{u = ln(3sinx + cosx)}\\{dv = \frac{{dx}}{{si{n^2}x}}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{3cosx - sinx}}{{3sinx + cosx}}dx}\\{v = - cotx - 3 = - \frac{{3sinx + cosx}}{{sinx}}}\end{array}} \right.\)
Khi đó
\[I = [ - (cotx + 3)ln(3sinx + cosx)]\left| {_{\frac{\pi }{4}}^{\frac{\pi }{2}}} \right. + \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{3cosx - sinx}}{{sinx}}} dx\]
\[ = 4.ln2\sqrt 2 - 3.ln3 - \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {dx + 3\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{d(sinx)}}{{sinx}}} .} \]
\[ = 4.ln2\sqrt 2 - 3.ln3 - \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {dx + 3ln|sinx|\left| {_{\frac{\pi }{4}}^{\frac{\pi }{2}}} \right.} \]
\[\begin{array}{l} = 4.ln2\sqrt 2 - 3.ln3 - \frac{\pi }{4} - 3.ln\frac{1}{{\sqrt 2 }}\\ = 12ln\sqrt 2 - 3ln3 - \frac{\pi }{4} + 3ln\sqrt 2 = 15.ln\sqrt 2 - 3.ln3 - \frac{\pi }{4}\end{array}\]
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = 15}\\{n = - 3}\end{array}} \right. \Rightarrow m + n = 12\)
Đáp án cần chọn là: A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)
\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)
\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]
Đáp án cần chọn là: A
Lời giải
Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)
Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)
\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)
\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.