Câu hỏi:
30/06/2022 125Với mỗi giá trị của tham số m, xét mặt phẳng (Pm) xác định bởi phương trình \[mx + m\left( {m + 1} \right)y + {\left( {m - 1} \right)^2}z - 1 = 0\]. Tìm tọa độ của điểm thuộc mọi mặt phẳng (Pm).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử\[M({x_0},{y_0},{z_0})\] là điểm thuộc\[({P_m})\] ta có
\[m{x_0} + m(m + 1){y_0} + (m - 1)2{z_0} - 1 = 0,\forall m\]
\[ \Leftrightarrow m{x_0} + m2{y_0} + m{y_0} + {m^2}{z_0} - 2m{z_0} + {z_0} - 1 = 0,\forall m\]
\[ \Leftrightarrow ({y_0} + {z_0}){m^2} + ({x_0} + {y_0} - 2{z_0})m + {z_0} - 1 = 0,\forall m\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y_0} + {z_0} = 0}\\{{x_0} + {y_0} - 2{z_0} = 0}\\{{z_0} - 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{z_0} = 1}\\{{y_0} = - 1}\\{{x_0} = 3}\end{array}} \right. \Leftrightarrow M(3, - 1,1)\)
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x′Ox,y′Oy,z′Oz lần lượt tại các điểm A,B,C sao cho \[OA = OB = OC \ne 0\]?
Câu 2:
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm M(2,−3,4) và nhận \[\overrightarrow n = \left( { - 2,4,1} \right)\;\]làm vectơ pháp tuyến.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4,−1,2), B(2,−3,−2). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.
Câu 4:
Trong không gian Oxyz, cho ba điểm A(1,0,0),B(0,1,0) và C(0,0,1) . Phương trình mặt phẳng (P) đi qua ba điểm A,B,C là:
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho A(1,−3,2),B(1,0,1),C(2,3,0). Viết phương trình mặt phẳng (ABC) .
Câu 6:
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1,3,−2) và song song với mặt phẳng \[(P):2x - y + 3z + 4 = 0\] là:
Câu 7:
Cho hình lập phương ABCD.A′B′C′D′. Côsin góc giữa hai mặt phẳng (A′BC) và (ABC′) bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!