Câu hỏi:

30/06/2022 477

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

\[{d_1}:\frac{{x - 3}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của d1 và d2 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng d1 đi qua \[{M_1}\left( {3;2;1} \right)\] và có VTCP\[\overrightarrow {{u_1}} = \left( {1;2;1} \right)\]

Đường thẳng d2 đi qua\[{M_2}\left( {0;2;2} \right)\] và có VTCP\[\overrightarrow {{u_2}} = \left( {1;0;1} \right)\]

Ta có\[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {2;0; - 2} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 3;0;1} \right)\]

Suy ra\[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = - 6 + 0 - 2 = - 8 \ne 0\]

Do đó d1 và d2 chéo nhau.

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là:

Lời giải

Ta có\[\overrightarrow {AB} = \left( {1;0; - 2} \right),\overrightarrow {CD} = \left( { - 2;m - 2;0} \right)\] và\[\overrightarrow {AC} = \left( {2;2; - 2} \right)\]

Suy ra\[\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = \left( {2m - 4;4;m - 2} \right)\]

Do đó

\[d\left[ {AB,CD} \right] = \frac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right].\overrightarrow {AC} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]} \right|}} \Leftrightarrow \frac{{\left| {2\left( {2m - 4} \right) + 8 - 2\left( {m - 2} \right)} \right|}}{{\sqrt {{{\left( {2m - 4} \right)}^2} + {4^2} + {{\left( {m - 2} \right)}^2}} }} = 2\]

\[ \Leftrightarrow |2m + 4| = 2\sqrt {5{m^2} - 20m + 36} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = 2}\end{array}} \right.\]

Đáp án cần chọn là: C

Câu 2

Cho hai điểm A(1;−2;0),B(0;1;1), độ dài đường cao OH của tam giác OAB là:

Lời giải

Ta có:\[\overrightarrow {OA} = \left( {1; - 2;0} \right),\overrightarrow {AB} = \left( { - 1;3;1} \right)\]

\[ \Rightarrow \left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{ - 2}\\3\end{array}}&{\begin{array}{*{20}{l}}0\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}0\\1\end{array}}&{\begin{array}{*{20}{l}}1\\{ - 1}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}1\\{ - 1}\end{array}}&{\begin{array}{*{20}{l}}{ - 2}\\3\end{array}}\end{array}} \right|} \right) = \left( { - 2; - 1;1} \right)\]

Do đó\[OH = d\left( {O,AB} \right) = \frac{{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \frac{{\sqrt {{2^2} + {1^2} + {1^2}} }}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \frac{{\sqrt {66} }}{{11}}\]

Đáp án cần chọn là: D

Câu 3

Điều kiện cần và đủ để hai đường thẳng cắt nhau là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

\[{d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 3}}{1},{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 1 + 2t}\\{z = - 1 + t}\end{array}} \right.\] và điểm A(1;2;3).

Đường thẳng Δ qua A, vuông góc với d1 và cắt d2 có phương trình là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = - t}\\{z = - 2 - t}\end{array}} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với d?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay