Câu hỏi:

30/06/2022 2,630 Lưu

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là:

A.\(\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 2}\end{array}} \right.\)

B. \(\left[ {\begin{array}{*{20}{c}}{m = - 4}\\{m = 2}\end{array}} \right.\)

C. \(\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = 2}\end{array}} \right.\)

D. \(\left[ {\begin{array}{*{20}{c}}{m = - 4}\\{m = - 2}\end{array}} \right.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có\[\overrightarrow {AB} = \left( {1;0; - 2} \right),\overrightarrow {CD} = \left( { - 2;m - 2;0} \right)\] và\[\overrightarrow {AC} = \left( {2;2; - 2} \right)\]

Suy ra\[\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = \left( {2m - 4;4;m - 2} \right)\]

Do đó

\[d\left[ {AB,CD} \right] = \frac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right].\overrightarrow {AC} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]} \right|}} \Leftrightarrow \frac{{\left| {2\left( {2m - 4} \right) + 8 - 2\left( {m - 2} \right)} \right|}}{{\sqrt {{{\left( {2m - 4} \right)}^2} + {4^2} + {{\left( {m - 2} \right)}^2}} }} = 2\]

\[ \Leftrightarrow |2m + 4| = 2\sqrt {5{m^2} - 20m + 36} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = 2}\end{array}} \right.\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[3\sqrt {19} \]

B. \[\frac{{3\sqrt {19} }}{{13}}\]

C. \[\sqrt 6 \]

D. \[\frac{{\sqrt {66} }}{{11}}\]

Lời giải

Ta có:\[\overrightarrow {OA} = \left( {1; - 2;0} \right),\overrightarrow {AB} = \left( { - 1;3;1} \right)\]

\[ \Rightarrow \left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{ - 2}\\3\end{array}}&{\begin{array}{*{20}{l}}0\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}0\\1\end{array}}&{\begin{array}{*{20}{l}}1\\{ - 1}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}1\\{ - 1}\end{array}}&{\begin{array}{*{20}{l}}{ - 2}\\3\end{array}}\end{array}} \right|} \right) = \left( { - 2; - 1;1} \right)\]

Do đó\[OH = d\left( {O,AB} \right) = \frac{{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \frac{{\sqrt {{2^2} + {1^2} + {1^2}} }}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \frac{{\sqrt {66} }}{{11}}\]

Đáp án cần chọn là: D

Câu 2

A.\(\left\{ {\begin{array}{*{20}{c}}{\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0}\\{\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0}\end{array}} \right.\)

B. \[\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0\]

C. \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\]

D. \[\left[ {\vec u,\overrightarrow {u'} } \right] = \vec 0\]

Lời giải

d cắt\[d' \Leftrightarrow \vec u,\overrightarrow {u'} \] không cùng phương và\[\vec u,\overrightarrow {u'} ,\overrightarrow {MM'} \] đồng phẳng

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0}\\{\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0}\end{array}} \right.\)

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}\]

B. \[\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}\]

C. \[\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{5}\]

D. \[\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 5}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 3t}\\{y = 1 + t}\\{z = 5t}\end{array}} \right.\)

B. \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 2 + t}\\{z = 1 + t}\end{array}} \right.\)

C. \[{d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\]

D. \[{d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP