Đăng nhập
Đăng ký
628 lượt thi 21 câu hỏi 30 phút
2020 lượt thi
Thi ngay
1052 lượt thi
984 lượt thi
1007 lượt thi
946 lượt thi
1231 lượt thi
850 lượt thi
1063 lượt thi
865 lượt thi
887 lượt thi
Câu 1:
Cho \[d,d'\] là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow {u\prime } ,M \in d,M\prime \in d\prime \]Khi đó \[d \equiv d\prime \;\] nếu:
A.\[\left[ {\vec u,\overrightarrow {u'} } \right] = \vec 0\]
B. \[\left[ {\vec u,\overrightarrow {u'} } \right] = \left[ {\vec u,\overrightarrow {MM'} } \right]\]
C. \[\left[ {\vec u,\overrightarrow {u'} } \right] = \left[ {\vec u,\overrightarrow {MM'} } \right] = \overrightarrow 0 \]
D. \[\left[ {\vec u,\overrightarrow {u'} } \right] \ne \left[ {\vec u,\overrightarrow {MM'} } \right]\]
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 3t}\\{y = - t}\\{z = 1 - 2t}\end{array}} \right.\) và \[{d_2}:\frac{{x - 1}}{{ - 3}} = \frac{{y - 2}}{1} = \frac{{z - 3}}{2}\].
Vị trí tương đối của d1 và d2 là:
A.Song song.
B.Trùng nhau.
C.Cắt nhau.
D.Chéo nhau.
Câu 3:
Điều kiện cần và đủ để hai đường thẳng cắt nhau là:
A.\(\left\{ {\begin{array}{*{20}{c}}{\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0}\\{\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0}\end{array}} \right.\)
B. \[\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0\]
C. \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\]
D. \[\left[ {\vec u,\overrightarrow {u'} } \right] = \vec 0\]
Câu 4:
Cho d,d′ là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow u \prime ,M \in d,M\prime \in d\prime .\]Nếu \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]thì:
A.d//d′
B.d≡d′
C.d cắt d′
D.d chéo d′
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
\[{d_1}:\frac{{x - 3}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của d1 và d2 là:
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = - t}\\{z = - 2 - t}\end{array}} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với d?
A.\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 3t}\\{y = 1 + t}\\{z = 5t}\end{array}} \right.\)
B. \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 2 + t}\\{z = 1 + t}\end{array}} \right.\)
C. \[{d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\]
D. \[{d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\]
Câu 7:
Công thức tính khoảng cách từ điểm A đến đường thẳng d′ đi qua điểm M′ và có VTCP \(\overrightarrow {u'} \)là:
A.\[d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\]
B. \[d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\overrightarrow {u'} }}\]
C. \[d\left( {A,d'} \right) = \frac{{\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]}}{{\overrightarrow {u'} }}\]
D. \[d\left( {A,d'} \right) = \frac{{\left| {\overrightarrow {AM'} .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow {u'} } \right|}}\]
Câu 8:
Khoảng cách từ điểm M(2;0;1) đến đường thẳng \[\Delta :\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] là:
A.\(\sqrt 2 \)
B. \(\sqrt 3 \)
C. \[2\sqrt 3 \]
D. \[\frac{5}{{\sqrt {17} }}\]
Câu 9:
Cho hai điểm A(1;−2;0),B(0;1;1), độ dài đường cao OH của tam giác OAB là:
A.\[3\sqrt {19} \]
B. \[\frac{{3\sqrt {19} }}{{13}}\]
C. \[\sqrt 6 \]
D. \[\frac{{\sqrt {66} }}{{11}}\]
Câu 10:
Cho hai đường thẳng \[\Delta ,\Delta \prime \;\] có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \) và đi qua các điểm M,M′. Khi đó:
A.\[d\left( {{\rm{\Delta }},{\rm{\Delta '}}} \right) = \frac{{\left| {\left[ {\vec u,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\vec u,\overrightarrow {u'} } \right]} \right|}}\]
B. \[d\left( {{\rm{\Delta }},{\rm{\Delta '}}} \right) = \frac{{\left| {\left[ {\overrightarrow {MM'} ,\overrightarrow {u'} } \right].\vec u} \right|}}{{\left| {\left[ {\vec u,\overrightarrow {u'} } \right]} \right|}}\]
C. \[d\left( {{\rm{\Delta }},{\rm{\Delta '}}} \right) = \frac{{\left| {\left[ {\vec u,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\vec u,\overrightarrow {MM'} } \right]} \right|}}\]
D. \[d\left( {{\rm{\Delta }},{\rm{\Delta '}}} \right) = \frac{{\left| {\left[ {\vec u,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\overrightarrow {MM'} } \right|}}\]
Câu 11:
Khoảng cách giữa hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.,{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 1 + t}\\{z = 3 - t}\end{array}} \right.\) là:
A.9
B.3
C.\(\frac{1}{3}\)
D.1
Câu 12:
\[{d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 3}}{1},{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 1 + 2t}\\{z = - 1 + t}\end{array}} \right.\] và điểm A(1;2;3).
Đường thẳng Δ qua A, vuông góc với d1 và cắt d2 có phương trình là:
A.\[\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}\]
B. \[\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}\]
C. \[\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{5}\]
D. \[\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 5}}\]
Câu 13:
Góc giữa hai đường thẳng có các VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \) thỏa mãn:
A.\[\cos \varphi = \frac{{\left| {\vec u.\overrightarrow {u'} } \right|}}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\]
B. \[\cos \varphi = \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\]
C. \[\cos \varphi = - \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\]
D. \[\cos \varphi = - \frac{{\left| {\vec u.\overrightarrow {u'} } \right|}}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\]
Câu 14:
Cho hình lập phương A(0;0;0),B(1;0;0),D(0;1;0),A′(0;0;1). Gọi M,N lần lượt là trung điểm của AB,CD. Khoảng cách giữa MN và A′C là:
A.\[\frac{1}{{\sqrt 2 }}\]
B. \[\frac{{\sqrt 2 }}{4}\]
C. \(\frac{1}{2}\)
D. \[\frac{3}{{\sqrt 2 }}\]
Câu 15:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là:
A.\(\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 2}\end{array}} \right.\)
B. \(\left[ {\begin{array}{*{20}{c}}{m = - 4}\\{m = 2}\end{array}} \right.\)
C. \(\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = 2}\end{array}} \right.\)
D. \(\left[ {\begin{array}{*{20}{c}}{m = - 4}\\{m = - 2}\end{array}} \right.\)
Câu 16:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình \[\frac{{x - 1}}{3} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 4}}\;\] và \[d\prime :\frac{{x + 1}}{4} = \frac{y}{1} = \frac{{z + 1}}{2}\;\;\]. Điểm nào sau đây không thuộc đường thẳng d nhưng thuộc đường thẳng d′?
A.N(4;0;−1)
B.M(1;−2;3) .
C.P(7;2;1) .
D.Q(7;2;3)
Câu 17:
Trong không gian Oxyz, cho đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = 3}\end{array}} \right.\)và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + 7t}\\{z = 3 + t}\end{array}} \right.\). Phương trình đường phân giác của góc nhọn giữa d1 và d2 là:
A.\[\frac{{x - 1}}{5} = \frac{{y - 2}}{{ - 12}} = \frac{{z - 3}}{1}\]
B. \[\frac{{x - 1}}{{ - 5}} = \frac{{y - 2}}{{12}} = \frac{{z - 3}}{1}\]
C. \[\frac{{x - 1}}{5} = \frac{{y - 2}}{{12}} = \frac{{z - 3}}{{ - 1}}\]
D. \[\frac{{x - 1}}{5} = \frac{{y - 2}}{{12}} = \frac{{z - 3}}{1}\]
Câu 18:
Trong không gian Oxyz, cho hai điểm M(−2;−2;1),A(1;2;−3) và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 5}}{2} = \frac{z}{{ - 1}}.\] Gọi \[\Delta \] là đường thẳng qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng bé nhất. Khoảng cách bé nhất đó là
A.\[\sqrt {29} \]
B. 6
C. 5
D. \[\frac{{\sqrt {34} }}{9}\]
Câu 19:
Trong không gian Oxyz , cho đường thẳng \[d:\,\,\frac{{x - 3}}{2} = \frac{{y - 4}}{1} = \frac{{z - 2}}{1}\] và 2 điểm A(6;3;−2); B(1;0;−1). Gọi \[\Delta \] là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến \[\Delta \] là nhỏ nhất. Một vectơ chỉ phương của \[\Delta \] có tọa độ :
A.(1;1;−3)
B.(1;−1;−1)
C.(1;2;−4)
D. (2;−1;−3)
Câu 20:
Trong không gian Oxyz cho điểm A(1;1;−2) và đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 2}}\]. Đường thẳng qua A và song song với d có phương trình tham số là
A.\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 - t}\\{z = - 2 - 2t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 + t}\\{z = - 2 - 2t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + t}\\{z = 2 - 2t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + t}\\{z = - 2 - 2t}\end{array}} \right.\)
Câu 21:
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 - t}\\{z = 1 - 3t}\end{array}} \right.\). Đường thẳng \[\Delta \] đi qua gốc tọa độ O, vuông góc với trục hoành Ox và vuông góc với đường thẳng d có phương trình là:
A.\(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = - 3t}\\{z = - t}\end{array}} \right.\)
B. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 3t}\\{z = t}\end{array}} \right.\)
C. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 3t}\\{z = - t}\end{array}} \right.\)
D. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = - 3t}\\{z = t}\end{array}} \right.\)
126 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com