Các bài toán về mối quan hệ giữa hai đường thẳng

  • 568 lượt thi

  • 21 câu hỏi

  • 30 phút

Câu 1:

Cho \[d,d'\] là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow {u\prime } ,M \in d,M\prime \in d\prime \]Khi đó \[d \equiv d\prime \;\] nếu:

Xem đáp án
\[d \equiv d' \Leftrightarrow \vec u,\overrightarrow {u'} ,\overrightarrow {MM'} \] đôi một cùng phương\[ \Leftrightarrow \left[ {\vec u,\overrightarrow {u'} } \right] = \left[ {\vec u,\overrightarrow {MM'} } \right] = \vec 0\]

Đáp án cần chọn là: C


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 3t}\\{y = - t}\\{z = 1 - 2t}\end{array}} \right.\) và \[{d_2}:\frac{{x - 1}}{{ - 3}} = \frac{{y - 2}}{1} = \frac{{z - 3}}{2}\].

Vị trí tương đối của d1 và d2 là:

Xem đáp án

Đường thẳng\[{d_1}\] đi qua\[{M_1}\left( { - 1;0;1} \right)\] và có VTCP\[\overrightarrow {{u_1}} = \left( {3; - 1; - 2} \right)\]

Đường thẳng\[{d_2}\] đi qua \[{M_2}\left( {1;2;3} \right)\] và có VTCP\[\overrightarrow {{u_2}} = \left( { - 3;1;2} \right)\]

Ta có\[\frac{3}{{ - 3}} = \frac{{ - 1}}{1} = \frac{{ - 2}}{2}\] nên\[\overrightarrow {{u_1}} \parallel \overrightarrow {{u_2}} \](1)

\[\frac{{ - 1 - 1}}{{ - 3}} \ne \frac{{0 - 2}}{1} \ne \frac{{1 - 3}}{2}\] nên\[{M_1} \notin {d_2}\](2)

Từ (1) và (2), suy ra d1 và d2 song song.

Đáp án cần chọn là: A


Câu 3:

Điều kiện cần và đủ để hai đường thẳng cắt nhau là:

Xem đáp án

d cắt\[d' \Leftrightarrow \vec u,\overrightarrow {u'} \] không cùng phương và\[\vec u,\overrightarrow {u'} ,\overrightarrow {MM'} \] đồng phẳng

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\vec u,\overrightarrow {u'} } \right] \ne \vec 0}\\{\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0}\end{array}} \right.\)

Đáp án cần chọn là: A


Câu 4:

Cho d,d′ là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow u \prime ,M \in d,M\prime \in d\prime .\]Nếu \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]thì:

Xem đáp án

Ta có: d chéo\[d' \Leftrightarrow \vec u,\overrightarrow {u'} ,\overrightarrow {MM'} \] không đồng phẳng \[ \Leftrightarrow \left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]

Đáp án cần chọn là: D


Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

\[{d_1}:\frac{{x - 3}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của d1 và d2 là:

Xem đáp án

Đường thẳng d1 đi qua \[{M_1}\left( {3;2;1} \right)\] và có VTCP\[\overrightarrow {{u_1}} = \left( {1;2;1} \right)\]

Đường thẳng d2 đi qua\[{M_2}\left( {0;2;2} \right)\] và có VTCP\[\overrightarrow {{u_2}} = \left( {1;0;1} \right)\]

Ta có\[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {2;0; - 2} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 3;0;1} \right)\]

Suy ra\[\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = - 6 + 0 - 2 = - 8 \ne 0\]

Do đó d1 và d2 chéo nhau.

Đáp án cần chọn là: D


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận