Câu hỏi:

30/06/2022 135

Trong không gian Oxyz, cho đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = 3}\end{array}} \right.\)và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + 7t}\\{z = 3 + t}\end{array}} \right.\). Phương trình đường phân giác của góc nhọn giữa d1 và d2 là:

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = 3}\end{array}} \right.\)  có 1 VTCP là\[\overrightarrow {{u_1}} = \left( {1;1;0} \right),\,\,\left| {\overrightarrow {{u_1}} } \right| = \sqrt 2 \]

\({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + 7t}\\{z = 3 + t}\end{array}} \right.\) có 1 VTCP là\[\overrightarrow {{u_2}} = \left( {0;7;1} \right),\,\,\left| {\overrightarrow {{u_2}} } \right| = 5\sqrt 2 \]

Ta có: \[\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 + 7 + 0 > 0 \Rightarrow \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right) < {90^0}\]

⇒Đường phân giác góc nhọn giữa d1 và d2 có 1 VTCP\[\vec u = 5.\overrightarrow {{u_1}} + \overrightarrow {{u_2}} = \left( {5;12;1} \right)\]

Phương trình đường phân giác của góc nhọn giữa d1 và d2 là:  

\[\frac{{x - 1}}{5} = \frac{{y - 2}}{{12}} = \frac{{z - 3}}{1}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai điểm A(1;−2;0),B(0;1;1), độ dài đường cao OH của tam giác OAB là:

Xem đáp án » 30/06/2022 1,135

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là:

Xem đáp án » 30/06/2022 839

Câu 3:

Điều kiện cần và đủ để hai đường thẳng cắt nhau là:

Xem đáp án » 30/06/2022 382

Câu 4:

Cho d,d′ là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow u \prime ,M \in d,M\prime \in d\prime .\]Nếu \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]thì:

Xem đáp án » 30/06/2022 326

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = - t}\\{z = - 2 - t}\end{array}} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với d?

Xem đáp án » 30/06/2022 289

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

\[{d_1}:\frac{{x - 3}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của d1 và d2 là:

Xem đáp án » 30/06/2022 282

Câu 7:

Công thức tính khoảng cách từ điểm A đến đường thẳng d′ đi qua điểm M′ và có VTCP \(\overrightarrow {u'} \)là:

Xem đáp án » 30/06/2022 252

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn