Câu hỏi:
30/06/2022 140Trong không gian Oxyz , cho đường thẳng \[d:\,\,\frac{{x - 3}}{2} = \frac{{y - 4}}{1} = \frac{{z - 2}}{1}\] và 2 điểm A(6;3;−2); B(1;0;−1). Gọi \[\Delta \] là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến \[\Delta \] là nhỏ nhất. Một vectơ chỉ phương của \[\Delta \] có tọa độ :
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi (P) là mặt phẳng đi qua B và vuông góc với\[d \Rightarrow \left( P \right):\,\,2x + y + z - 1 = 0\]
\[{\rm{\Delta }}\] đi qua B và vuông góc với\[d \Rightarrow {\rm{\Delta }} \subset \left( P \right)\]
Gọi H,K lần lượt là hình chiếu của A lên (P) và \[{\rm{\Delta }}\] ta có \[AH \le AK\]
Do đó để khoảng cách từ A đến \[{\rm{\Delta }}\] là nhỏ nhất\[ \Rightarrow H \in {\rm{\Delta }}\]
Phương trình AH đi qua A và nhận\[\overrightarrow {{u_d}} = \left( {2;1;1} \right)\] là 1 VTCP là\(\left\{ {\begin{array}{*{20}{c}}{x = 6 + 2t}\\{y = 3 + t}\\{z = - 2 + t}\end{array}} \right.\)\[\begin{array}{*{20}{l}}{H \in AH \Rightarrow H\left( {6 + 2t;3 + t; - 2 + t} \right)}\\{H \in \left( P \right) \Rightarrow 2\left( {6 + 2t} \right) + 3 + t - 2 + t - 1 = 0 \Leftrightarrow 6t + 12 = 0 \Leftrightarrow t = - 2}\\{ \Rightarrow H\left( {2;1; - 4} \right)}\end{array}\]
\[{\rm{\Delta }}\] đi qua B,H nhận\[\overrightarrow {BH} \left( {1;1; - 3} \right)\] là 1 VTCP.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai điểm A(1;−2;0),B(0;1;1), độ dài đường cao OH của tam giác OAB là:
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là:
Câu 4:
Cho d,d′ là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow u \prime ,M \in d,M\prime \in d\prime .\]Nếu \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]thì:
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = - t}\\{z = - 2 - t}\end{array}} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với d?
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
\[{d_1}:\frac{{x - 3}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của d1 và d2 là:
Câu 7:
Công thức tính khoảng cách từ điểm A đến đường thẳng d′ đi qua điểm M′ và có VTCP \(\overrightarrow {u'} \)là:
về câu hỏi!