Câu hỏi:
13/07/2024 6,252Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Bước 1: Viết phương trình mặt phẳng (P) là mặt phẳng đi qua M và vuông góc với \[{\rm{\Delta }}\].
Ta có: \[{\rm{\Delta }}:\,\,\,\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\] và M(2;0;1)
Gọi (P) là mặt phẳng đi qua M và vuông góc với\[{\rm{\Delta }} \Rightarrow \overrightarrow {{n_P}} = \overrightarrow {{u_{\rm{\Delta }}}} = \left( {1;\,\,2;\,\,1} \right).\]
\[ \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0 \Leftrightarrow x + 2y + z - 3 = 0.\]
Bước 2: Tìm tọa độ điểm\[H = \left( P \right) \cap {\rm{\Delta }}\] khi đó H là trung điểm của MM′, từ đó tìm tọa độ điểm M′.
Gọi H là giao điểm của (P) và \[{\rm{\Delta }}\]
⇒ Toạ độ của H là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}}\\{x + 2y + z - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{x + 2y + z - 3 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t - 4 + 4t + 1 + t - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t = 1}\end{array}} \right.\end{array}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 0}\\{z = 2}\end{array}} \right. \Rightarrow H(1;0;2)\)
Ta có: M′ là điểm đối xứng của M qua \[{\rm{\Delta }}\] ⇒H là trung điểm của MM′ ⇒M′(0;0;3)
Bước 3: Khoảng cách từ \[M\left( {{x_0};{y_0}} \right)\]đến mặt phẳng (P)
Ta có: (Oxy):z=0.
\[ \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \frac{{\left| 3 \right|}}{1} = 3.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:
Câu 3:
Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c
Câu 4:
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\]. Phương trình đường thẳng Δ qua A(1;1;−2) vuông góc với d và song song với (P) là:
Câu 6:
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!