Câu hỏi:

13/07/2024 5,813

Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Viết phương trình mặt phẳng (P) là mặt phẳng đi qua M và vuông góc với \[{\rm{\Delta }}\].

Ta có: \[{\rm{\Delta }}:\,\,\,\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\] và M(2;0;1)

Gọi (P) là mặt phẳng đi qua M và vuông góc với\[{\rm{\Delta }} \Rightarrow \overrightarrow {{n_P}} = \overrightarrow {{u_{\rm{\Delta }}}} = \left( {1;\,\,2;\,\,1} \right).\]

\[ \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0 \Leftrightarrow x + 2y + z - 3 = 0.\]

Bước 2:  Tìm tọa độ điểm\[H = \left( P \right) \cap {\rm{\Delta }}\]  khi đó H là trung điểm của MM′, từ đó tìm tọa độ điểm M′.

Gọi H là giao điểm của (P) và \[{\rm{\Delta }}\]

⇒ Toạ độ của H là nghiệm của hệ phương trình:

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}}\\{x + 2y + z - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{x + 2y + z - 3 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t - 4 + 4t + 1 + t - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t = 1}\end{array}} \right.\end{array}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 0}\\{z = 2}\end{array}} \right. \Rightarrow H(1;0;2)\)

Ta có: M′ là điểm đối xứng của M qua \[{\rm{\Delta }}\] ⇒H là trung điểm của MM′ ⇒M′(0;0;3)

Bước 3: Khoảng cách từ \[M\left( {{x_0};{y_0}} \right)\]đến mặt phẳng (P)

Ta có: (Oxy):z=0.

\[ \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \frac{{\left| 3 \right|}}{1} = 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)

Tính a+b+c.

Xem đáp án » 13/07/2024 2,256

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:

Xem đáp án » 13/07/2024 1,425

Câu 3:

Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c

Xem đáp án » 13/07/2024 1,361

Câu 4:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).

Xem đáp án » 30/06/2022 1,288

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\].   Phương trình đường thẳng Δ  qua A(1;1;−2) vuông góc với d và song song với (P) là:

Xem đáp án » 30/06/2022 853

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:

Xem đáp án » 30/06/2022 407

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store