Câu hỏi:

30/06/2022 427

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt phẳng (P) có VTPT\[\overrightarrow {{n_P}} = \left( {1;2; - 3} \right)\]; d có VTCP\[\overrightarrow {{u_d}} = \left( {1;1; - 1} \right)\]

Gọi \[A = d \cap \left( P \right)\] tọa độ điểm A thỏa mãn hệ

\(\left\{ {\begin{array}{*{20}{c}}{\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}}\\{x + 2y - 3z + 4 = 0}\end{array}} \right. \Rightarrow A( - 3;1;1)\)

Do \[{\rm{\Delta }}\] nằm trong (P) và vuông góc với d nên có VTCP\[\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {1; - 2; - 1} \right)\]

Khi đó đường thẳng \[{\rm{\Delta }}\] được xác định là đi qua A(−3;1;1) và có VTCP \[\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {1; - 2; - 1} \right)\] nên có phương trình\[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).

Xem đáp án » 13/07/2024 6,272

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)

Tính a+b+c.

Xem đáp án » 13/07/2024 2,423

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:

Xem đáp án » 13/07/2024 1,814

Câu 4:

Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c

Xem đáp án » 13/07/2024 1,660

Câu 5:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).

Xem đáp án » 30/06/2022 1,559

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\].   Phương trình đường thẳng Δ  qua A(1;1;−2) vuông góc với d và song song với (P) là:

Xem đáp án » 30/06/2022 925

Câu 7:

Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:

Xem đáp án » 30/06/2022 667

Bình luận


Bình luận