Câu hỏi:

30/06/2022 667

Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì C,D cùng phía so với (P) và khoảng cách từ CC đến (P) bằng khoảng cách từ D đến (P) nên ta có (P)//CD

Ta có\[\overrightarrow {AB} = ( - 3; - 1;2);\overrightarrow {CD} = ( - 2;4;0) \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = ( - 8; - 4; - 14)\]

Vì\[(P)//CD\] và (P) đi qua hai điểm A,B nên ta có\[\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]\] Chọn\[\overrightarrow {{n_P}} = (4;2;7)\]

\[ \Rightarrow (P):\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {{n_P}} = (4;2;7)}\\{A(1;2;1) \in (P)}\end{array}} \right. \Rightarrow (P):4(x - 1) + 2(y - 2) + 7(z - 1) = 0\]

\[ \Leftrightarrow 4x + 2y + 7z - 15 = 0\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).

Xem đáp án » 13/07/2024 6,273

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)

Tính a+b+c.

Xem đáp án » 13/07/2024 2,424

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:

Xem đáp án » 13/07/2024 1,818

Câu 4:

Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c

Xem đáp án » 13/07/2024 1,661

Câu 5:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).

Xem đáp án » 30/06/2022 1,559

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\].   Phương trình đường thẳng Δ  qua A(1;1;−2) vuông góc với d và song song với (P) là:

Xem đáp án » 30/06/2022 926

Bình luận


Bình luận