Câu hỏi:
13/07/2024 1,331Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1: Viết phương trình đường thẳng \[{\rm{\Delta }}\] đi qua A và vuông góc với (P).
Gọi \[{\rm{\Delta }}\] là đường thẳng đi qua A và vuông góc với (P), phương trình đường thẳng \[{\rm{\Delta }}\] là:
\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 - 2t}\\{z = - 2 - t}\end{array}} \right.\left( \Delta \right)\)
Bước 2: Tìm\[H = {\rm{\Delta }} \cap \left( P \right)\]
Vì H là hình chiếu vuông góc của A trên (P) nên\[H = {\rm{\Delta }} \cap \left( P \right)\] ⇒ Tọa độ điểm H là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 - 2t}\\\begin{array}{l}z = - 2 - t\\2x - 2y - z + 7 = 0\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 - 2t}\\{z = - 2 - t}\\{2 + 4t - 2 + 4t + 2 + t + 7 = 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 1 - 2t}\\{z = - 2 - t}\\{9t + 9 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = - 1}\\{x = - 1}\\{y = 3}\\{z = - 1}\end{array}} \right. \Rightarrow H( - 1;3; - 1)\)
Bước 3: Tìm a,b,c và tính tổng.
\[ \Rightarrow a = - 1,\,\,b = 3,\,\,c = - 1\]
Vậy\[a + b + c = - 1 + 3 - 1 = 1\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c
Câu 4:
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\]. Phương trình đường thẳng Δ qua A(1;1;−2) vuông góc với d và song song với (P) là:
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:
về câu hỏi!