Tìm tập xác định D của hàm số \[y = \sqrt {\frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}}} \] là
A.\[{\rm{D}} = \left[ { - 4; - 1} \right) \cup \left( { - \frac{1}{2}; + \infty } \right).\]
B. \[{\rm{D}} = \left( { - \infty ; - 4} \right] \cup \left( { - 1; - \frac{1}{2}} \right).\]
C. \[{\rm{D}} = \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right).\]
D. \[{\rm{D}} = \left[ { - 4; - \frac{1}{2}} \right).\]
Quảng cáo
Trả lời:

Hàm số xác định khi và chỉ khi \[f\left( x \right) = \frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}} \ge 0.\]
Phương trình\[{x^2} + 5x + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = - 4}\end{array}} \right.\] và\[2{x^2} + 3x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = - \frac{1}{2}}\end{array}} \right.\]
Bảng xét dấu
Dựa vào bảng xét dấu ta thấy \[\frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}} \ge 0 \Leftrightarrow x \in \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right)\]
Vậy tập xác định của hàm số là \[D = \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right).\]
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có
\[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2} \Leftrightarrow {\left( {{x^2} + x + m} \right)^2} - {\left( {{x^2} - 3x - m} \right)^2} \ge 0\]
\[ \Leftrightarrow 4x\left( {2x + m} \right)\left( {x - 1} \right) \ge 0\]
Với m < 0 ta có bảng xét dấu
TH1: \[ - \frac{m}{2} \ge 1\]
Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì\[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]
TH 2: \[0 < - \frac{m}{2} < 1\]
Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì \[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]
Vậy có 1 giá trị
Đáp án cần chọn là: B
Câu 2
A.\(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta \ge 0}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta < 0}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta >0}\end{array}} \right.\)</>
Lời giải
Ta có:\[f\left( x \right) \le 0\,,\forall x \in \mathbb{R}\] khi \[a < 0\] và \[{\rm{\Delta }} \le 0\].
Đáp án cần chọn là: A
Câu 3
A.\[f\left( x \right) >0\,,\forall x \in \mathbb{R}\]
B. \[f\left( x \right) < 0\,,\forall x \in \mathbb{R}\]
C. f(x) không đổi dấu
D. Tồn tại x để f(x) = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.m < −1.
B.m >−1.
C.\[m < - \frac{4}{3}\]
D. \[m >\frac{4}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \le 0}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \ge 0}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta < 0}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta >0}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.