Câu hỏi:

23/05/2022 231 Lưu

Tập nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4x + 3 >0}\\{{x^2} - 6x + 8 >0}\end{array}} \right.\) là

A.\[\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\]

B. \[\left( { - \infty ;1} \right) \cup \left( {4; + \infty } \right)\]

C. \[\left( { - \infty ;2} \right) \cup \left( {3; + \infty } \right)\]

D. \[\left( {1;4} \right)\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4x + 3 >0}\\{{x^2} - 6x + 8 >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{x < 1}\\{x >3}\end{array}} \right.}\\{\left[ {\begin{array}{*{20}{c}}{x < 2}\\{x >4}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x < 1}\\{x < 2}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x < 1}\\{x >4}\end{array}\left( {VN} \right)} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x >3}\\{x < 2}\end{array}\left( {VN} \right)} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x >3}\\{x >4}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x < 1}\\{x >4}\end{array}} \right.\)

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

\[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2} \Leftrightarrow {\left( {{x^2} + x + m} \right)^2} - {\left( {{x^2} - 3x - m} \right)^2} \ge 0\]

\[ \Leftrightarrow 4x\left( {2x + m} \right)\left( {x - 1} \right) \ge 0\]

Với m < 0 ta có bảng xét dấu

TH1: \[ - \frac{m}{2} \ge 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 1)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì\[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

TH 2: \[0 < - \frac{m}{2} < 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 2)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì \[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

Vậy có 1 giá trị

Đáp án cần chọn là: B

Câu 2

A.\(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta \ge 0}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta < 0}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta >0}\end{array}} \right.\)</>

Lời giải

Ta có:\[f\left( x \right) \le 0\,,\forall x \in \mathbb{R}\] khi \[a < 0\] và \[{\rm{\Delta }} \le 0\].

Đáp án cần chọn là: A

Câu 3

A.\[f\left( x \right) >0\,,\forall x \in \mathbb{R}\]

B. \[f\left( x \right) < 0\,,\forall x \in \mathbb{R}\]

C. f(x) không đổi dấu

D. Tồn tại x để f(x) = 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.m < −1.

B.m >−1.

C.\[m < - \frac{4}{3}\]

D. \[m >\frac{4}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \le 0}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \ge 0}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta < 0}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta >0}\end{array}} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP