Câu hỏi:

23/05/2022 240

Với giá trị nào của a thì bất phương trình \[a{x^2} - x + a \ge 0\;\] nghiệm đúng với \[\forall x \in \mathbb{R}\;\]?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để bất phương trình \[a{x^2} - x + a \ge 0,\forall x \in \mathbb{R} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \le 0}\\{a >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 - 4{a^2} \le 0}\\{a >0}\end{array}} \right.\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{a \ge \frac{1}{2}}\\{a \le - \frac{1}{2}}\end{array}} \right.}\\{a >0}\end{array}} \right. \Leftrightarrow a \ge \frac{1}{2}\)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

\[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2} \Leftrightarrow {\left( {{x^2} + x + m} \right)^2} - {\left( {{x^2} - 3x - m} \right)^2} \ge 0\]

\[ \Leftrightarrow 4x\left( {2x + m} \right)\left( {x - 1} \right) \ge 0\]

Với m < 0 ta có bảng xét dấu

TH1: \[ - \frac{m}{2} \ge 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 1)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì\[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

TH 2: \[0 < - \frac{m}{2} < 1\]

 Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình  (ảnh 2)

Từ Bảng xét dấu ta thấy để BPT nghiệm đúng với x >0 thì \[ - \frac{m}{2} = 1 \Leftrightarrow m = - 2\]

Vậy có 1 giá trị

Đáp án cần chọn là: B

Câu 2

Lời giải

Ta có:\[f\left( x \right) \le 0\,,\forall x \in \mathbb{R}\] khi \[a < 0\] và \[{\rm{\Delta }} \le 0\].

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP