Câu hỏi:
25/05/2022 230Số nghiệm của phương trình \[\sqrt 2 \cos \left( {x + \frac{\pi }{3}} \right) = 1\]với \[0 \le x \le 2\pi \;\]là:
Quảng cáo
Trả lời:
Ta có:\[\sqrt 2 \cos \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \frac{1}{{\sqrt 2 }} = \cos \frac{\pi }{4}\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = - \frac{{7\pi }}{{12}} + k2\pi }\end{array}} \right.(k \in Z)\)
Vì \[0 \le x \le 2\pi \]nên\[0 \le - \frac{\pi }{{12}} + k2\pi \le 2\pi \Leftrightarrow \frac{\pi }{{12}} \le k2\pi \le \frac{{25\pi }}{{12}} \Leftrightarrow \frac{1}{{24}} \le k \le \frac{{25}}{{24}} \Rightarrow k = 1\]
Và \[0 \le - \frac{{7\pi }}{{12}} + k2\pi \le 2\pi \Leftrightarrow \frac{{7\pi }}{{12}} \le k2\pi \le \frac{{31\pi }}{{12}} \Leftrightarrow \frac{7}{{24}} \le k \le \frac{{31}}{{24}} \Rightarrow k = 1\]
Vậy có hai nghiệm của phương trình trong khoảng \[\left[ {0;2\pi } \right]\]Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình sinx=m có nghiệm nếu\[\left| m \right| \le 1\]và vô nghiệm nếu\[\left| m \right| >1\]
Đáp án A:\[|m| = | - 3| = 3 >1\] =>Loại
Đáp án B: \[|m| = | - 2| = 2 >1\]=>Loại
Đáp án C: \[|m| = |0| = 0 \le 1\] =>Nhận
Đáp án D:\[|m| = |3| = 3 >1\] =>Loại
Đáp án cần chọn là: C
Lời giải
ĐKXĐ: \[\sin \left( {5x - \frac{\pi }{8}} \right) \ne 0 \Leftrightarrow 5x - \frac{\pi }{8} \ne k\pi \Leftrightarrow x \ne \frac{\pi }{{40}} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]
Ta có:
\[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow 5x - \frac{\pi }{8} = \frac{\pi }{2} + k\pi \]
\[ \Leftrightarrow 5x = \frac{{5\pi }}{8} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.