Câu hỏi:

25/05/2022 219

Cho phương trình \[\sin \left( {2x - \frac{\pi }{5}} \right) = 3{m^2} + \frac{m}{2}\]. Biết \(x = \frac{{11\pi }}{{60}}\) là một nghiệm của phương trình. Tính m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thay\[x = \frac{{11\pi }}{{60}}\]  vào phương trình ta có:

\[sin(2.\frac{{11\pi }}{{60}} - \frac{\pi }{5}) = 3{m^2} + \frac{m}{2} \Leftrightarrow sin\frac{\pi }{6} = 3{m^2} + \frac{m}{2}\]

\[ \Leftrightarrow \frac{1}{2} = 3{m^2} + \frac{m}{2} \Leftrightarrow 6{m^2} + m = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = \frac{1}{3}}\\{m = - \frac{1}{2}}\end{array}} \right.\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình sinx=m có nghiệm nếu\[\left| m \right| \le 1\]và vô nghiệm nếu\[\left| m \right| >1\]

Đáp án A:\[|m| = | - 3| = 3 >1\] =>Loại

Đáp án B: \[|m| = | - 2| = 2 >1\]=>Loại

Đáp án C: \[|m| = |0| = 0 \le 1\] =>Nhận

Đáp án D:\[|m| = |3| = 3 >1\] =>Loại

Đáp án cần chọn là: C

Câu 2

Lời giải

ĐKXĐ: \[\sin \left( {5x - \frac{\pi }{8}} \right) \ne 0 \Leftrightarrow 5x - \frac{\pi }{8} \ne k\pi \Leftrightarrow x \ne \frac{\pi }{{40}} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]

Ta có:

\[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow \cot \left( {5x - \frac{\pi }{8}} \right) = 0 \Leftrightarrow 5x - \frac{\pi }{8} = \frac{\pi }{2} + k\pi \]

\[ \Leftrightarrow 5x = \frac{{5\pi }}{8} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{5}\left( {k \in Z} \right)\]

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP