Câu hỏi:

25/05/2022 288

Trong một tổ học sinh có 5 em gái và 10 em trai. Thùy là 1 trong 5 em gái và Thiện là 1 trong 10 em trai. Thầy chủ nhiệm chọn ra 1 nhóm 5 bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bài toán đối: tìm số cách chọn ra 5  bạn mà trong đó có cả bạn Thùy và Thiện.

Bước 1: Chọn nhóm 3  em trong 13 em (13 em này không tính em Thùy và Thiện) có \[C_{13}^3 = 286\] cách.

Bước 2: Chọn 2 em Thùy và Thiện có 1 cách.

Vậy theo quy tắc nhân thì ta có 286  cách chọn 5  em mà trong đó có cả 2  em Thùy và Thiện.

Chọn 5 em bất kì trong số 15  em thì ta có: \[C_{15}^5 = 3003\] cách.

Vậy theo yêu cầu đề bài thì có tất cả \[3003 - 286 = 2717\]cách chọn mà trong đó có ít nhất một trong hai em Thùy Và Thiện không được chọn.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn?

Xem đáp án » 13/07/2024 9,378

Câu 2:

Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.

Xem đáp án » 25/05/2022 7,674

Câu 3:

Số chỉnh hợp chập 5 của 9 phần tử là:

Xem đáp án » 25/05/2022 3,342

Câu 4:

Một nhóm gồm 2 học sinh lớp 10, 2 học sinh lớp 11 và 2 học sinh lớp 12 xếp thành hai hàng ngang để chụp ảnh, mỗi hàng 3 người. Gọi n là số cách xếp sao cho 2 học sinh lớp 10 đứng ở hàng phía trước và 2 học sinh lớp 12 đứng ở hàng phía sau. Tính n.

Xem đáp án » 13/07/2024 2,902

Câu 5:

Một lớp 11 có 30 học sinh, gồm 15 nam và 15 nữ. Gọi a là số cách xếp các học sinh thành hai hàng, một hàng nam và một hàng nữ trong lúc tập thể dục giữa giờ. Tính a.

Xem đáp án » 13/07/2024 2,563

Câu 6:

Cho tập \[A = \left\{ {1;2;4;6;7;9} \right\}\] Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.

Xem đáp án » 25/05/2022 2,222

Câu 7:

Số các hoán vị khác nhau của n phần tử là:

Xem đáp án » 25/05/2022 1,196

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store