Câu hỏi:
25/06/2022 16,388Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Tam giác ABC cân tại B có M là trung điểm \[AC\,\, \Rightarrow \,\,BM \bot AC.\]
⇒ Đáp án A đúng.
Ta có
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BM \bot AC}\\{BM \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BM \bot (SAC)\\ \Rightarrow (SBM) \bot (SAC)\end{array}\)
⇒ Đáp án B đúng.
Ta có
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot BA}\\{BC \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BC \bot (SAB)\\ \Rightarrow (SBC) \bot (SAB)\end{array}\)
⇒ Đáp án C đúng.
Dùng phương pháp loại trừ thì D là đáp án sai.
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tam giác SAC đều có I là trung điểm của SC nên \[AI \bot SC\].
⇒ Mệnh đề (I) đúng.
Gọi H là trung điểm AC suy ra \[SH \bot AC\]. Mà \[(SAC) \bot (ABC)\] theo giao tuyến AC nên \[SH \bot (ABC)\] do đó \[SH \bot BC\]. Hơn nữa theo giả thiết tam giác ABC vuông tại C nên \[BC \bot AC\].
Từ đó suy ra \[BC \bot (SAC) \Rightarrow BC \bot AI.\]. Do đó mệnh đề (III) đúng.
Từ mệnh đề (I) và (III) suy ra mệnh đề (IV) đúng.
Ta có : \(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot AC}\\{BC \bot SH}\end{array}} \right. \Rightarrow BC \bot (SAC)\\BC \subset (SBC) \Rightarrow (SBC) \bot (SAC)\end{array}\)
Vậy mệnh đề (II) đúng.
Vậy mệnh đề (II) đúng.
Đáp án cần chọn là: D
Lời giải
Do SBC là tam giác đều có H là trung điểm BC nên\[SH \bot BC\]
Mà\[\left( {SBC} \right) \bot \left( {ABC} \right)\] theo giao tuyến\[BC \Rightarrow SH \bot \left( {ABC} \right) \Rightarrow SH \bot AB.\]
⇒ Đáp án A đúng.
Ta có HI là đường trung bình của\[{\rm{\Delta }}\,ABC\] nên\[HI\parallel AC \Rightarrow HI \bot AB.\]
⇒ Đáp án B đúng.
Ta có\(\left\{ {\begin{array}{*{20}{c}}{SH \bot AB}\\{HI \bot AB}\end{array}} \right. \Rightarrow AB \bot (SHI) \Rightarrow (SAB) \bot (SHI)\)
⇒ Đáp án D đúng.
Dùng phương pháp loại trừ thì C là đáp án sai.
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.