Câu hỏi:
25/06/2022 1,050Cho hình chóp S.ABC có đáy ABC. là tam giác vuông tại B, BC=a. Cạnh bên SA=a vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng \[{45^0}\]. Độ dài AC bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có\[\left( {SBC} \right) \cap \left( {ABC} \right) = BC \Rightarrow BC\] là giao tuyến.
Mặt khác\[SA \bot \left( {ABC} \right)\] và\[{\rm{\Delta }}ABC\] vuông tại\[B \Rightarrow AB \bot BC\]
Nên \(\left\{ {\begin{array}{*{20}{c}}{SA \bot BC}\\{AB \bot BC}\end{array}} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot SB\)
\(\left\{ {\begin{array}{*{20}{c}}{(SBC) \cap (ABC) = BC}\\{(SBC) \supset SB \bot BC}\\{(ABC) \supset AB \bot BC}\end{array}} \right. \Rightarrow (\widehat {(SBC);(ABC)}) = (\widehat {SB;AB}) = \widehat {SBA} = {45^0}\)
Xét\[\;{\rm{\Delta }}SAB\] vuông tại A, có\[\widehat {SBA} = {45^0} \Rightarrow SA = AB = a\]
Mà\[A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=BC=2a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC), \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:
Câu 2:
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng aa. Gọi M là trung điểm SC. Tính góc \[\varphi \] giữa hai mặt phẳng (MBD) và (ABCD).
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=AC=a. Hình chiếu vuông góc HH của SS trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và \(SH = \frac{{a\sqrt 6 }}{2}\). Gọi \[\varphi \] là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA=x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.
Câu 5:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi E,F lần lượt là trung điểm của cạnh AB và AC. Góc giữa hai mặt phẳng (SEF) và (SBC) là
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB=SH=a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC).
Câu 7:
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \) cạnh bên AA′=a (minh họa như hình vẽ). Góc giữa hai mặt phẳng (A′BD) và (C′BD) bằng bao nhiêu độ?
về câu hỏi!