Câu hỏi:

27/06/2022 593 Lưu

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi \[\varphi \] là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi\[O = AC \cap BD\]. Do hình chóp S.ABCD đều nên \[SO \bot \left( {ABCD} \right)\]

Gọi M là trung điểm của SD. Tam giác SCD đều nên\[CM \bot SD\]

Tam giác SBD có\[SB = SD = a,BD = a\sqrt 2 \]

Suy ra\[{\rm{\Delta }}\,SBD\] vuông tại\[S \Rightarrow SB \bot SD \Rightarrow OM \bot SD.\]

Do đó

\(\left\{ {\begin{array}{*{20}{c}}{(SBD) \cap (SCD) = SD}\\{(SBD) \supset OM \bot SD}\\{(SCD) \supset CM \bot SD}\end{array}} \right. \Rightarrow ((\widehat {SBD);(SCD})) = (\widehat {OM;CM}) = \widehat {OM}\)

Ta có\(\left\{ {\begin{array}{*{20}{c}}{OC \bot BD}\\{OC \bot SO}\end{array}} \right. \Rightarrow OC \bot (SBD) \Rightarrow OC \bot OM\)

Tam giác vuông MOC vuông tại O, có\[\tan \widehat {CMO} = \frac{{OC}}{{OM}} = \frac{{\frac{1}{2}a\sqrt 2 }}{{\frac{1}{2}a}} = \sqrt 2 \]

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi (ảnh 1)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng aa. Gọi M là trung điểm SC. Tính góc  (ảnh 1)

Gọi M’ là trung điểm\[OC \Rightarrow MM'\parallel SO \Rightarrow MM' \bot \left( {ABCD} \right).\]

Theo công thức diện tích hình chiếu, ta có\[{S_{{\rm{\Delta }}{\kern 1pt} M'BD}} = \cos \varphi .{S_{{\rm{\Delta }}{\kern 1pt} MBD}}\]

\[\begin{array}{*{20}{l}}{ \Rightarrow \cos \varphi = \frac{{{S_{{\rm{\Delta }}{\kern 1pt} M'BD}}}}{{{S_{{\rm{\Delta }}{\kern 1pt} MBD}}}} = \frac{{BD.M'O}}{{BD.MO}} = \frac{{M'O}}{{MO}} = \frac{{\frac{1}{2}OC}}{{\frac{1}{2}SA}}}\\{ = \frac{{\sqrt {B{C^2} - O{B^2}} }}{{SA}} = \frac{{\sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} }}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = {{45}^0}.}\end{array}\]

Đáp án cần chọn là: C

Lời giải

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=BC=2a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC), (ảnh 1)

Bước 1: Gọi H là trung điểm của AC, chứng minh\[SH \bot \left( {SAC} \right),\,\,BH \bot \left( {SAC} \right)\]

Gọi H là trung điểm của AC ta có\[SH \bot AC\] (do tam giác SAC cân tại S).

Ta có\(\left\{ {\begin{array}{*{20}{c}}{(SAC) \bot (ABC) = AC}\\{AH \subset (SAC),AH \bot AC}\end{array}} \right. \Rightarrow AH \bot \left( {ABC} \right)\).  Tương tự \[BH \bot \left( {SAC} \right)\]

Bước 2:  Trong (SAB) kẻ\[BI \bot SA\] chứng minh \[\angle \left( {\left( {SAB} \right);\left( {SAC} \right)} \right) = \angle \left( {BH;HI} \right)\]

Trong (SAB) kẻ \[BI \bot SA\] ta có

\(\left\{ {\begin{array}{*{20}{c}}{SA \bot BI}\\{SA \bot BH(do\,BH \bot (SAC))}\end{array}} \right. \Rightarrow SA \bot (BHI) \Rightarrow SA \bot HI\)

\(\left\{ {\begin{array}{*{20}{c}}{(SAB) \cap (SAC) = SA}\\{BI \subset (SAB),BI \bot SA}\\{HI \subset (SAC),HI \bot SA}\end{array}} \right. \Rightarrow \angle \left( {\left( {SAB} \right);\left( {SAC} \right)} \right) = \angle \left( {BI;HI} \right)\)

Bước 3:  Sử dụng tính chất tam giác vuông cân, định lí Pytago, hệ thức lượng trong tam giác vuông và tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Vì\[BH \bot \left( {SAC} \right)\,\,\left( {cmt} \right) \Rightarrow BH \bot HI \Rightarrow {\rm{\Delta }}BHI\] vuông tại I.

Do đó\[\angle \left( {\left( {SAB} \right);\left( {SAC} \right)} \right) = \angle \left( {BH;HI} \right) = \angle BHI\]

Tam giác ABC vuông cân tại B có\[AB = BC = 2a\] nên\[BH = \frac{{AB}}{{\sqrt 2 }} = a\sqrt 2 ,AC = AB\sqrt 2 = 2\sqrt 2 a\]

Ta có: \[SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {3{a^2} - 2{a^2}} = a\]

\[ \Rightarrow HI = \frac{{SH.AH}}{{SA}} = \frac{{a.\sqrt 2 a}}{{\sqrt 3 a}} = \frac{{\sqrt 6 a}}{3}\]Xét tam giác vuông BHI có\[\tan \angle BIH = \frac{{BH}}{{IH}} = \frac{{a\sqrt 2 }}{{\frac{{\sqrt 6 a}}{3}}} = \sqrt 3 \Rightarrow \angle BIH = {60^0}\]

Vậy góc giữa mặt phẳng (SAB) và (SAC) là 600

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP